The Clean Power Plan is a step in the right direction

With the publication of the final Clean Power Plan, the United States can finally claim some leadership in curbing CO2 emissions at the federal level. The final rule is, on balance, technically, economically and environmentally coherent. The actual goal is short of what it needs to be, but it is better than in the draft plan. And the direction is right, which is the most important thing. Thanks to all of you who worked with us and supported us in the process, especially Scott Denman, Diane Curran, Lisa Heinzerling, Elena Krieger, and my co-author, M.V. Ramana..

We asked for many things in our comments on the draft EPA Clean Power Plan. The EPA agreed not only with the substance, but more important, the reasoning underlying our policy positions in the final Clean Power Plan (CPP) rule.

Most of all we asked for a coherent, technology-neutral rule that would be more protective of climate. Here are some of the big picture items:

  1. Existing nuclear plants and license extensions will not be subsidized by the CPP: We asked that both existing nuclear power plants and existing renewable energy be removed from the calculation of emission targets because they do nothing to reduce CO2 emissions. We asked that they be treated consistently. (Neither have significant onsite emissions of CO2 and both have some offsite lifecycle emissions that are much less than natural gas per unit of generation). Existing generation should not be part of the “Best System of Emission Reduction” (BSER) because we want to reduce CO2 emissions from where they are now (or in 2012, the baseline year). The EPA agreed. Both are gone from the final rule. Further, in its draft rule, the EPA implicitly assumed (in its modelling of the electricity sector) that licenses of existing plants would be extended. The relicensing issue has been removed from the CPP since existing generation is not in the calculation of emission reductions. It is simply the baseline generation, as is clear from page 345 of the final plan (italics added):

    …we believe it is inappropriate to base the BSER on elements that will not reduce CO2 emissions from affected EGUs below current levels. Existing nuclear generation helps make existing CO2 emissions lower than they would otherwise be, but will not further lower CO2 emissions below current levels. Accordingly,…the EPA is not finalizing preservation of generation from existing nuclear capacity as a component of the BSER.

    The same reasoning was applied to license extensions. Only uprates (increases in licensed capacity of existing plants) would be allowed to be counted. This is consistent and technology neutral (in the same way that increasing the capacity of a wind farm would be counted). The rule does not seek to “preserve” existing power plants. Or to shut them down. That will happen on the merits without an EPA hand on the scale in favor of nuclear.

  2. New and under-construction nuclear reactors are not part of the best system of emission reduction; renewable energy is: We pointed out that new nuclear plants are very expensive; even the State of Georgia, whose ratepayers are forced to subsidize two nuclear units through their electricity bills, noted that in its comments. Since the “Best System of Emission Reduction” (BSER) has a cost criterion, new nuclear should be excluded from the BSER. (We also cited other reasons for that.) The EPA excluded new nuclear from BSER but included new renewable energy (p. 345, italics added):

    Investments in new nuclear capacity are very large capital-intensive investments that require substantial lead times. By comparison, investments in new RE generating capacity are individually smaller and require shorter lead times. Also, important recent trends evidenced in RE development, such as rapidly growing investment and rapidly decreasing costs, are not as clearly evidenced in nuclear generation. We view these factors as distinguishing the under-construction nuclear units from RE generating capacity, indicating that the new nuclear capacity is likely of higher cost and therefore less appropriate for inclusion in the BSER.

    This is a critically important statement. We don’t have a shortage of low CO2 sources. We have a shortage of time and money to reduce CO2 emissions. The EPA recognized (very delicately!) that renewable energy is better on both counts. As a result, one or more the four new reactors under construction at Vogtle and Summer can proceed or stop on the financial merits, rather than these units being pushed into existence with the Clean Power Plan playing the role of midwife.

    The EPA also “seeks to drive the widespread development and deployment of wind and solar, as these broad categories of renewable technology are essential to longer term climate strategies” (p. 874). This is an excellent goal. The EPA recognized that costs of solar and wind are declining.

  3. New natural gas plants are not part of the best system of emission reductions: This is perhaps the best and most solid indication that the Obama administration takes long-term reductions seriously. New natural gas combined cycle plants, even though they have lower CO2 emissions per megawatt-hour (using EPA leak rates and global warming potential for methane), will not be part of the BSER even though they meet the cost test and emission rate test. The reason: they will be emitting CO2 for decades (p. 346, italics added):

    However, our determination not to include new construction and operation of new NGCC capacity in the BSER in this final rule rests primarily on the achievable magnitude of emission reductions rather than costs. Unlike emission reductions achieved through the use of any of the building blocks, emission reductions achieved through the use of new NGCC capacity require the construction of additional CO2-emitting generating capacity, a consequence that is inconsistent with the long-term need to continue reducing CO2 emissions beyond the reductions that will be achieved through this rule. New generating assets are planned and built for long lifetimes –- frequently 40 years or more –-that are likely longer than the expected remaining lifetimes of the steam EGUs whose CO2 emissions would initially be displaced be the generation from the new NGCC units. The new capacity is likely to continue to emit CO2 throughout these longer lifetimes….

  4. Increased capacity factor of existing natural gas plants is BSER: The EPA is still allowing increased capacity factor of existing natural gas combined cycle power plants to displace coal. This is the result of its estimate of methane leak rates and global warming potential. So long as new central station natural gas plants are not encouraged, the rate of use of existing plants is a problem that can be sorted out in the coming years. It would have been very difficult to argue only on the grounds of the BSER rules and existing methane leaks estimates that increasing capacity factor of existing natural gas combined cycle units to displace coal is not BSER. The job now is to get the EPA to recognize a wider array of methane leaks rates (that have ample empirical support) and to use both a 20-year and 100-year warming potential screen in the design of its CO2 reduction programs. The recent report from the IPCC uses a global warming potential of 28-34, including feedback effects. It would be entirely appropriate for the EPA to adopt a similar evaluation metric. The 20-year warming potential, which is about three times higher would be even more appropriate given that the climate crisis is developing more rapidly than previously anticipated.
  5. The EPA has incentivized early investment in low-income efficiency programs (p. 864 onward): This is a very important feature of the CPP. States that want to make very sure that low-income households are not adversely impacted by the rule will take advantage of the additional emission reduction credits the EPA is offering for early action. This also promises to provide other benefits such as reduction of the cost of energy assistance programs and lower adverse health impacts due to inability to pay for health care or medicines.
  6. The cap-and-trade provision is OK in the electricity context, though with reservations: Carbon permits from new generation can be traded. For instance, existing nuclear plants cannot generate tradeable CO2 credits (unless they are from a licensed uprate). I am not a fan of expansive cap-and-trade but the EPA formulation in the CPP makes sense to me. It is the same as if emission limits were set for a group of states or at the grid level, such as the PJM grid in the mid-Atlantic region but extending inland to Ohio and beyond, or the MISO grid in the upper Midwest. The EPA seeks not to impose a model of reductions; only to get to a certain level of reductions. In the cap-and-trade system permitted by the EPA, the CO2 reduction could happen in one state or in another, but it will have to happen. One of my reservations is that the EPA also allows the trading of energy efficiency credits across state lines. It is difficult enough to account for program-induced efficiency improvements within a state and distinguish them from say, the effects of federal appliance standards. Bundling these efficiency gains into tradeable credits is not a good idea. Another issue is that the method of calculating the reduction in emission rate is not the best as applied to efficiency. We had asked for a more global and comprehensive approach to CO2 accounting, but did not succeed on this point.
  7. Conclusion – The CPP is a real tour de force; it gives me hope. Of course, there is much work to do now that the final CPP has been published (besides making it stick). We need to advocate for states to mandate GHG reduction targets of 40 to 50 percent by 2030 from all sources; we need to accelerate electrification of transportation and restructuring of the grid….But the CPP is a great springboard from which to make these leaps.

After Sandy: Mitigation or Adaptation?

Arjun Makhijani [1]

A decade ago, concern about climate disruption focused mainly on mitigation. How could the world drastically reduce greenhouse gas emissions to curb the severity and frequency of extreme weather events? With global treaty efforts in tatters and Washington in gridlock however, the focus began to shift to adaptation. How can the damage from climate change be reduced?

Even a cursory look at the destruction wrought by Hurricane Sandy – a waterlogged landscape, natural gas explosions, devastating fires, shortages of food, water, and gasoline, and vast areas without electricity — makes it clear that we must do both.

Thoroughly revamping the country’s century-old electrical infrastructure is a critical starting point. We need a system that is much more resistant to damage and recovers quicker. One way to accomplish both goals was illustrated at Japan’s Tohoku-Fukushi University after last year’s devastating tsunami. The university’s electric power generation system consists of local natural gas-fired generators, fuel cells, solar photovoltaics, and storage batteries. Because of this microgrid, essential facilities, including the water plant, elevators, lighting kept functioning even as much of the rest of the larger grid was swept away. That allowed vital nursing facilities, clinic and laboratory equipment to keep running. (Learn more about the Tohoku-Fukushi microgrid and about other microgrid examples at the Lawrence Berkeley Lab website)

Courtesy of DOE/NREL, Credit – Connie Komomua.

Normally, a microgrid functions as part of a larger regional or national system. Electricity is generated, stored and supplied locally. At the same time, power is exchanged with the rest of the grid to reduce costs and maintain a high level of reliability and performance. In an emergency, however, a microgrid will cut itself off automatically from the stricken network. Instead, it goes into “island” mode, continuing to supply local customers essential needs. That would prevent problems like the one during Hurricane Sandy when an explosion at a single substation caused a massive blackout in Lower Manhattan. Of course, microgrids cannot protect specific locations from flooding or damage. That is a different kind of problem. But with a system of interconnected microgrids, much of the essential equipment in Lower Manhattan out of the reach of flooding would have kept operating.

Putting microgrids at the core of the transformation of the electrical system will end total dependence on a vulnerable, overly-centralized system. The replacement will be a distributed, intelligent system whose essential parts are much more likely to function without disruption during extreme events. In addition, a system based on microgrids is also well-matched to greatly increasing efficiency of electricity use. The higher the efficiency of use, the larger the number of functions a micro-grid in island mode can supply. Higher efficiency also means that a much larger part of the economy can keep functioning at any given level of power. Buildings that are well insulated will stay warm longer without the heating system functioning; food will be preserved much longer without power in highly efficient refrigerators. Crucially, this technology, built for adapting to climate disruption will also mitigate it by helping to reduce greenhouse gas emissions.

As they consider how to protect the region from extreme storms and floods, Governors Christie and Cuomo and Mayor Bloomberg should appoint a task force to create a roadmap for building a distributed resilient efficient and intelligent grid in New York City, Long Island and the Jersey shore. Such a project could be the core of the infrastructural transformation that is needed all along the Gulf and Atlantic Coasts. Interconnected microgrid networks can enable people and the economy to flourish in the new normal of more frequent and more violent weather events.

Notes:

  1. Arjun Makhijani is senior engineer and president of the Institute for Energy and Environmental Research; he has consulted with electric utilities and several agencies of the United Nations on energy issues. ↩ Return

Bad News on Climate; Good News on Energy

My February 26, 2008 op ed in the Dallas Morning News seems to have excited a great deal of interest, including on this blog. I really enjoyed my speaking tour of Texas, including being on the Dallas PBS TV program named Think, talking about Carbon-Free and Nuclear Free. See the video here.

(Dr. Egghead’s philosophical disclosure: Descartes could have done better than “€œI think therefore I am.” I prefer what the French do rather than what their philosophers say: “€œI eat therefore I am” and also “€œI am therefore I eat.”)

Watch the video anyway. You’€™ll like it. Krys Boyd was a really knowledgeable and gracious host at KERA TV. If you love my mellifluous voice on that, see clips from one of my Dallas area speeches, courtesy of the Dallas Peace Center.

There is bad news on climate and good news on energy.

One of the indicators of a warming Earth is the extent of summer Arctic Ice melting. Last summer’€™s melting was not only the worst since measurements began, but the rate of change increased drastically. Here is a chart showing model projections (the red and the dashed lines) and actual satellite measurements (heavy black line)

Great Arctic Ice Melt of 2007

Chart of IPCC's modelling predictions to the end of the century versus actual satellite measurements.

Chart is courtesy of Dr. A. Sorteberg, Bjerknes Centre for Climate Research, University of Bergen, Norway.

The previous worst case estimate for complete summer melting was about 2070. Now it may be less than a decade. We cannot afford to wait for time to tell us whether this worst case will come about. We must act. Two climate scientists, H. Damon Matthews of Concordia University and Ken Caldiera of the Carnegie Institution of Washington, recently published an article in Geophysical Research Letters, analyzing the long-term requirements for protecting climate and concluded as follows:

“We have shown here that stable global temperatures within the next several centuries can be achieved if CO2 emissions are reduced to nearly zero. This means that avoiding future human-induced climate warming may require policies that seek not only to decrease CO2 emissions, but to eliminate them entirely.” [emphasis and color added]Source: H. Damon Matthews and Ken Caldeira, Stabilizing climate requires near-zero emissions, GEOPHYSICAL RESEARCH LETTERS, VOL. 35, XXXX, 2008. (prepublication)

See a New Scientist article about this paper

There is good news to offset the bad news: My book Carbon-Free and Nuclear-Free shows that we do no€™t have to go to the poor house to eliminate carbon dioxide emissions from fossil fuels. We can have a flourishing economy and protect climate. Wind energy in good areas is already cheaper than nuclear or competitive with it. The country needs sensible rules for investment in transmission lines to create more of a boom in wind. It’€™s already happening in Texas, which has such rules; some oilmen like T. Boone Pickens see wind farms as the future of energy. See the New York Times article.

In the United States, the area of parking lots and commercial building rooftops is large enough to supply much or most of its electricity requirements. And Nanosolar, located in Silicon Valley, is all set to make solar panels on a large-scale for less than a dollar watt (plus installation). That means solar electricity is likely to make nuclear energy economically obsolete by the time the first proposed new nuclear plants come on line (if all goes according to the nuclear industry’€™s plans), making for another generation of economic lemons, for which ratepayers and taxpayers will pay a heavy price. Why go there?

New Zealand has announced a goal of zero CO2 emissions without nuclear power by mid-century. Why not the United States? Declaring that to be a goal and enacting the tough policies that will be needed could work wonders for restoring the positive image that most of the world’€™s people once had about the United States, which has fallen into sad disrepute abroad in recent times.

S. David Freeman, former Chairman of the TVA, noted in his Foreword to my book, that it will take “determination and guts …[to] achieve a renewable energy economy.” That means your involvement. Take the message of Carbon-Free and Nuclear-Free to the candidates of all parties, independent of those whom you personally support; ask them if they are familiar with Carbon-Free and Nuclear-Free, which shows we can live well without fossil fuels or nuclear power.

You can do more. Link to this blog; comment on it; make it the go-to place for energy commentary, discussion, and Q&A about the energy problems of our time. Read my book. Download it free. Discuss it in your book club.

Posts to come: On China and India; on efficiency; on the coming generation of passenger vehicles.

–Arjun

6935 Laurel Ave., Suite 201 · Takoma Park, Maryland, 20912 USA · Tel. 1-301-270-5500 · Fax 1-301-270-3029; E-mail: