作为能源的钚

——阿琼·麦克贾尼

在过去短短的几年中，美国和俄国由于拆除过剩的核弹头而囤积了大量的钚和浓缩铀。这些过剩物质在世界范围内再一次地被作为能源这一问题激起争论。为继续援助正在实施中的铀项目提供新的论据。本文将回顾与钚使用有关的基本事实，并据此问题作出一些成本和分析。

铀和钚的基本常识

事实上，钚-235 是唯一天然存在的裂变材料 (即可以维持链式反应并可以驱动核反应堆的燃料)，然而，钚-239 在天然铀矿中仅占 0.7% 的比重，其他部分几乎都是另一种同位素，即不能维持链式反应的铀-238。

但是，尽管铀-238 不是裂变材料，它却可以在核反应堆中转变为可裂变的钚-239。这一直特性使得核能的提倡者把钚-238 视为核能未来前景的关键。实际上，人们可以设计某种反应堆，使其在发电过程中从铀-238 产出的钚形式裂变材料要比所消耗的来得多。这种类型的反应堆被称为 “增殖反应堆”，而钚-238 就被称为“增殖性材料”。核能的提倡者已用 “神奇的能源”来形容增殖反应堆电力生产系统，因为该系统在生产结束时拥有的燃料数量多于其在生产开始时的所拥有燃料数量。

在 50 年代和 60 年代，钚被视为一种很稀缺的资源，科学家们曾认为以增殖反应堆为基础的电力系统对铀资源的需要量大大低于一次性使用铀的核电系统。例如，一座由一台轻水反应堆 (最常见的核反应堆) 组成的 1,000 兆瓦 [3] 的电站在其工作年限内大约需要 4,000 吨的天然铀，而相比之下，同等规模的一台增殖反应堆则需要 40 吨天然铀，这种理论上的对资源需要量

[2] 除非另有说明，有关反应堆容积的所有数据均以兆瓦为单位，假设的该反应堆的工作年限为 30 年，容量系数为 70%。数据是从约翰·R·拉马什的《核电工程导论》(第二版，艾迪生-韦利出版公司，1983 年)一书中以四舍五入法取引的。
的百倍的减少，使得核能的提倡者确信，增殖反应堆及在燃料在核反应堆中的燃料中回收的钚将成为未来的神奇核能源的核心。到那时，核燃料将会“非常便宜以至于不再需要大量供应。”[1]当
时，人们对使用核能的预测是正常的。20年代中期，美国预期到2000年使其装机的发电量达到100万兆瓦，然而，目前美国的发电量仅有上述预期的10%(即10万
兆瓦)，而且在2000年以前也不会再增加了(参见第11页的表3)。

从反应堆到核武器？

- 在长崎爆炸的原子弹中能够使用核裂变的核只有成年人的手掌心大小。

- 目前分离出来的商用钚的数量足以制造20,000到30,000枚粗

糙但却是威力极大的核弹。

- 到2000年，民用反应堆分离出来的钚的总量预计将超过世
界核武器中的钚的总量。

支持增殖反应堆的理论观点仍旧鼓励着全球的核设施建设。但是，技术、经济、政治、环
境和军事现实已经交汇起来，它们将使建立在钚基础之上的能
源系统在经济上是不可行的，在环境上是危险的，在外交上是困难的，在军事上是冒险的。

技术和经济并发症

本文的讨论将集中于钠冷却增殖反应堆（亦称快中子反应堆），这是一种尚在开发的主要的
增殖反应堆。在包括美国、俄罗斯、法国、英国、印度、日本和德国
在内的许多国家已经花费了几百亿美元用于该技术的研究、
开发和论证。然而，该技术至今

还尚未达到商业化阶段，它甚至
连适度可靠地生产电力和增殖
燃料都做不到。增殖反应堆的总
容量约为2,600兆瓦，仅占世界34
万兆瓦核电总量的0.8%，而核能
在世界总电量中又占12%。增
殖反应堆不仅只生产了核电总
量中极小的一部分，而且也没有
净生产出数量可资的裂变材
料。实际上，到目前为止，增殖反
应堆可能一直是裂变材料的净
消耗者。

世界上增殖反应堆发电能
力总量差不多有一半是由于一个
反应堆提供的，那就是法国的
“超级凤凰”反应堆，但它已面
临严重的运转问题，而且目前已
不再作为增殖反应堆而存在。相
反，它现在是裂变材料的净燃
烧者，主要当作研究堆和另一种相
似的元素（链式元素）裂变的科研
设施。世界增殖反应堆发电总量
中另有10%来自日本的280兆瓦
的“文难”反应堆。该反应堆在其
投入使用仅8个月后（1995年12月）
就曾发生过事故。

除了法国和日本以外，其他
绝大多数的增殖反应堆都使用
铀而不是更难用的钚作为燃料。
俄罗斯的BN600钠冷却反应堆主
要使用高浓缩铀，哈萨克斯坦的
BN350反应堆现在则使用中等程
度的浓缩铀。

增殖反应堆的设计和运作会由于许多问题而陷于困境。

- 增殖反应堆比轻水反应堆

更难控制，因为核反应失控
（包括完全失去控制或“快速临
界”）的现象在快速增殖反应堆
中要比在轻水反应堆和其他使
用慢中子进行链式反应的反应
堆中更容易发生。

- 钠，尽管是一种绝好的冷
却剂，但却会与空气发生剧烈反
应并在接触水时发生爆炸。钠的
这些和其它特性都带来了严重
的安全问题，设计困难和操作难

[1] 有关核能源会“非常便宜以至于
不能再需要计量供给”的想法，实际上
是冷战时的宣传。即使在50年代，核
工程师们也从未相信过核能会真正
便宜起来，参见能源与环境研究所
报告《核能的骗局》。

2
把钚作为燃料用到增殖反应堆中增加了安全风险。这就要求比轻水反应堆需要更多的安全保障。

由于钚有较强的放射性和要求更高的安全保障，钚燃料的生产成本大大高于铀。

从反应堆中提取钚以使其重新用于反应堆（再处理）的费用较高，而且还带来许多安全和环境问题（再处理问题将在下一节《能源与安全》中讨论）。

由于发生灾难性事故的风险更大以及此类事故的潜在后果更为严重，所以必须采取更为重大的安全措施。

鉴于上述讨论过的巨额成本和操作问题，绝大多数增殖反应堆现已暂停或终止。在英国、德国和美国，这类反应堆或已被放弃，或退回到底水平的研究阶段。日本的计划也由于1995年12月“文殊”电站的铀泄漏事故而严重受挫，预计几年内该电站不会重新工作。当前法国还没有建造新增殖反应堆的计划，英国和德国则已中止了“欧洲增殖反应堆”计划。迄今为止，印度仅建造了一个小型的实验电厂，俄罗斯建造增殖反应堆的计划由于缺乏资金而搁浅。

由于增殖反应堆、再处理过程和钚燃料生产中存在着成本和技术难题，增殖反应堆的费用已大大高于仅用铀作燃料的反应堆。而且，铀的储量比50、60年代估计的要大得多。一般而言，在过去的几十年中，铀的价格不是上涨而是下跌了。

而且，在过去的10年中，现货市场价格（一定时间内公开市场价格）一直大大低于合同价格，例如，1990年每公斤铀的现货价格为30美元——这只是合同价格的一半（按1995年美元价值计算）。在过去几年中，每公斤铀的现货价在20至40美元之间，铀价较低的部分原因是需求量的减少，因为已建造的核反应堆数量大大少于原先计划的建造数。

钚的价值和成本

尽管各国还未建设起以增殖反应堆为基础的电力系统，但人们仍然可能把钚作为一种燃料用到轻水反应堆和其他非设计用来增殖出钚的反应堆中。无论如何，一座轻水反应堆中的能量有四分之一到三分之一取之于钚，这些钚是反应堆运作过程中从燃料棒里的铀-238中产生的。而且，轻水反应堆中乏燃料棒通常都含有约0.7%的钚裂变同位素。那里钚的数量虽比用于反应堆中的裂变材料要少得多，但它是可以被提取出来用作燃料的。

然而，绝大多数反应堆不是被设计成用纯钚来运作的，裂变材料的总量（铀-235加上钚裂变同位素）必须保持在设计水平以下——对绝大多数轻水反应堆来说，保持在低于设计水平的5%左右。钚被制成氧化物形式，并同用过的铀氧化物（主要是铀-238和约0.2%的铀-235）混合在一起，来制成一种混合的氧化物燃料（“MOX燃料”）。这样，似乎即使没有增殖反应堆，钚作为核反应堆的一种燃料也可以是有用的。

尽管从物理学的观点来看这一论点在理论上是正确的，但从经济角度而言，它却是失败的。要判定钚的经济价值，我们就必须考虑把它加工、制成有用燃料所需的费用，并把这一费用同其他燃料的费用加以比较。美国国家科学院1995年发表的一份关于选择如何反应堆来处理钚的研究报告，对这一课题作出了最为详尽和独立的分析。
美国国家科学院的报告估计，按照1992年的美元价值计算，假设天然铀的价格是每公斤55美元，那么加工和制造浓缩铀氧化物反应堆燃料(4.4%浓度)的费用约为每公斤1,400美元。假定可以从核反应堆中获得过剩的铀，那么制造氧化物燃料的费用约为每公斤1,900美元(1992年美元标准)，其中不包括燃料和保险费用。氧化物燃料更高的成本，意即使铀可以无偿取得，一座全部使用氧化物核反应堆每年的燃料费，也要比一座1,000兆瓦反应堆每年使用铀燃料的费用高出大约1,500万美元。或者说在其使用寿命期间，成本要比后者高出约4亿5千万美元(按1992年的美元价值计算)，而且，处理燃料废料的费用也可能高于处理氧化物燃料的费用，因为处理氧化物废料更具有放射性并包含高净两到三倍的残留铅。

很显然，铅的价格相对较低，即使在最有利的条件下(即铅本身可以无偿获取又假设铅价要高出1992年的现货市场价格许多的条件下)，使用氧化物燃料仍然是不经济的，因为我们把再处理费用考虑进去时，成本之间的差距甚至会更大，因为再处理会使每座反应堆在其使用寿命内的燃料成本再增加几亿美元。

正如美国国家科学院1994年的研究所指出的一样，铀在物理学意义上具有燃料价值这一事实并未使其在经济上具有可行性。页岩中存在的石油也在物理学意义上具有燃料价值。正是由于从页岩中提取石油比从油田中提取石油需要付出更高的成本，才使得油页岩象铅一样无法具有作为燃料的经济价值。除此，铅还有某种扩散的倾向，这虽然可以量化，却是严重的代价。

1995年美元价值计算的铀矿石合同价格

<table>
<thead>
<tr>
<th>年份</th>
<th>美元/公斤铀</th>
</tr>
</thead>
<tbody>
<tr>
<td>1950</td>
<td>100</td>
</tr>
<tr>
<td>1960</td>
<td>60</td>
</tr>
<tr>
<td>1970</td>
<td>50</td>
</tr>
<tr>
<td>1980</td>
<td>90</td>
</tr>
</tbody>
</table>

*已用生产者价格指数将目前的铀价格折算成1995年的美元价格。

扩散的危险

尽管民用燃料已生产出来用于制造武器的铅相比，具有不同的同位素组合，但它仍可用于制造核裂变弹。美国原子能委员会1962年进行的一次成功的试验已经证明了这一点。连续的后处理和使用铅会产生双重扩散危险。首先，已分离的商用铀存量的日益增加，损害了国际条约所规定的裁军义务。即使再处理把氧化物燃料流出商业目的，这一行为仍可能被视为仅仅增加了商业用铀材料的库存。从短期而言，这将破坏全球为防止裂变材料生产而进行的富有成效的谈判。长远来看，它将严重损害核不扩散条约。该条约第6条规定，缔约国承诺“真诚地寻求谈判，以便在与早日停止军备竞赛和核裁军有关的问题上采取有效措施……”

第二个危险是铅正在被转移到黑市上，铅的燃料价值取决于铀的价格。假设天然铀的价格是每公斤40美元，那么铅-235的价格约为5,600美元每公斤。由于

参见美国科学院的报告《过剩武器用铅的管理和处理——有关反应堆的选择》，国家科学院国际安全与军备控制委员会，1995年出版，第290、294页。
钚-239 和铀-235 每次裂变释放出的能量大致相同，所以理论上裂变材料钚的燃料价值也应是

历史上全世界钚存量一览表
(公吨)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>军用钚**</td>
<td>0.1</td>
<td>2</td>
<td>45</td>
<td>130</td>
<td>210</td>
<td>265</td>
<td>270</td>
</tr>
<tr>
<td>商用钚</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>185</td>
<td>650</td>
<td>1,000</td>
</tr>
<tr>
<td>本分离</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>145</td>
<td>530</td>
<td>805</td>
</tr>
<tr>
<td>商用钚</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>40</td>
<td>120</td>
<td>195</td>
</tr>
<tr>
<td>总量</td>
<td>0.1</td>
<td>2</td>
<td>45</td>
<td>136</td>
<td>395</td>
<td>915</td>
<td>1,270</td>
</tr>
</tbody>
</table>

* 所有数据均四舍五入为一个大的数字或最接近5公吨的数字。总量一栏数据没有再进行四舍五入。
** 除美国外，其他国家都未公布过其历史上军用钚产量的数据，因此除美国以外的其他国家的军用钚产量是估测出来的。我们曾推测1990年和1995年俄罗斯的军用钚产量为150公吨，但最近来自俄罗斯的消息显示，其军用钚数量还要少些，约为130公吨（四舍五入）。
† 只有那些目前还在进行再处理的国家，即法国、美国、日本、俄罗斯和印度，才拥有分离出来的商用钚。此外，有些国家虽未进行处理，但与法国和美国签署过合同，因此，它们也有相当数量的商用钚。这些国家分别是德国、比利时、荷兰、意大利和瑞士。美国也有相当少量的商用钚，这是由位于纽约的西格马厂生产的，该工厂已于1972年关闭。

资料来源：阿·麦克费尼和斯科特·塞对斯的《核电的欺骗》，马里兰州塔科马公园市，能源与环境研究所，1996年。

每公斤5,600美元。但反应堆级的钚中还含有非裂变同位素，这使得其价值降至每公斤4,400美元[5]。而6到10公斤反应堆级的钚便足以制造一枚核弹，这样一枚用钚制造的核弹的燃料价值在26,400美元到44,000美元之间。然而，在一个以制造武器为目的的潜在的黑市上，钚的价格无疑要高得多。钚被转移到黑市的危险在俄罗斯地区特别突出，在那里，中央控制的削弱，加上集团犯罪的加剧和经济条件的恶化都增加了钚被转移到黑市的机会。

长远的能源问题

目前，就解决短期和中期能源问题而言，使用钚会遇到许多经济上的问题，这一点是非常明确的，也不存在严重的争论。但是，支持把钚作为一种能源的人则从长远的能源需求出发，认为这可以作为一个理由，以建设和维持用钚作燃料的基础设施。

据当前的估计，每公斤80美元的铀资源（这一低价格仍然是混合氧化物燃料所无法竞争的）约有330万公吨，足够在现今核电生产水平上作为一次性燃料使用约50到70年。这一估计还没有考虑由于价格上涨而引发的勘探开采热潮。石油和天然气的开发历史具有启迪意义。1973-1974年这类产品的价格上涨是石油出口国组织采取限产和定价政
一种燃料来使用是没多少大意义的，对核任何潜在的经济利用最早也是几十年以后的事。在资金匮乏条件下使用核电更无意义，因为这些资金本可以更好地投于有较好的环境与安全特点和较高回报率的领域，如投于以天然气或生物量作燃料的电厂、以天然气辅助为支持的太阳能发电厂或用于提高能源利用的效率。

无论人们如何看待核能的未来，现在就投入巨资把核作为

社论：能源与环境研究所在处理钚方面的建议

—— 阿德·麦克甘尼

对世界上囤积的钚进行处理是当务之急，尽管许多人谈论钚的再处理，称把钚作为核反应堆燃料使用为“循环利用”，但本能源与环境研究所认为，将钚玻璃化而不是将其作为燃料使用是处理钚的最佳方法。俄罗斯和美国目前正在拆除成千上万的核弹头，却还没有实施一个能够有效地处理过剩军用钚的战略。同时，法国、英国、日本、俄罗斯和印度则通过再处理商用反应堆中的乏燃料（从核反应堆中提取钚和铀）继续生产可用于武器的商用钚，从而增加着钚的总存量，尽管美国没有为军事或商业目的而再处理钚，但它却一直屈从于要求继续向军用核设施追加资金的压力。1996年2月，美国在萨凡纳河地区重开了一座军用再处理工厂，尽管从环境保护、公众和工人健康的角度看，再处理是管理核废料中最糟糕的方法，但美国仍称重开这座回收工厂是出于“环境管理”的需要。

反对使用钚的许多经济、技术和环境和安全方面的论据并未

使那些狂热地认为钚是一种能源宝藏的人信服，他们仍觉得钚将在世界能源经济中发挥长期的作用。而且，这些钚的提倡者在一些关键性国家，其中包括俄罗斯、法国、日本、英国以及情况稍好一点的美国，还发挥着巨大的影响。

美俄两国领导人在钚究竟是财富还是负担的问题上存在着根本的分歧。俄罗斯政府的观点是钚是一种重要的能源和经济宝藏，而许多美国领导人，比如能源部长黑兹尔·奥莱利和总统科学顾问约翰·H·吉本斯博士，则把超出军事需求的钚视为一种负担。美国国家科学院1994与1995年的研究报告得出结论，即使把出售电力的年收入考虑进去，在反应堆中使用用钚还是入不敷出的。这笔纯亏损费用的数量大致同玻璃化钚的费用相当。当然，在美国也有一些钚问题上的观点与俄罗斯官方的接近。而且，在美国包括能源部在内，仍然存在一种强烈的意见，要求把钚放入铀-钚氧化物混合燃料用于现有的电力反应
确保长期得到价格合理的铀供给。这一储备可以来源于过剩的军用高浓铀。

如果一个公正的专门小组审查认定从核燃料中重新提取钚是为了发电而获取较便宜的燃料，可向这一行动提供了财政保障。通过这种方式，一旦使用钚作燃料变得比较经济时，俄罗斯及其他政府就可以选择钚。

这些步骤应当能够缓解有关核反应堆燃料供应的担忧，并允许核燃料钚在近期内继续下去。美国、欧盟和日本将向此类活动提供资金和财政保障。

钚的玻璃化

为了确保钚不被用于制造核武器，我们有必要将其转变成一种不能用于制造核武器的燃料。实现这一目标的一种方法是，将钚与大剂量的玻璃熔液混合在一起，将其倒入金属容器中制成玻璃圆柱体。这一过程即为钚的玻璃化。玻璃圆柱体中铀的含量可以是一至几百分点的一部分，这个过程中的铀含量低，可以使之难以被窃取或提炼。通过增加需要储存或提炼的玻璃圆柱体的数量，从玻璃中重新提炼钚所需时间就足以完成，使钚更难于被重新获取。

美国和俄罗斯政府可以

通过创立某些机制来讨论有关核燃料的能源问题。这些机制是为消除那些认为从长远来看钚是一种极有价值的能源的人们的忧虑而建立的。我们建议采取如下两种补充行动：

- 建立用于反应堆的铀燃料国际储备，以此作为一种手段来

确保长期得到价格合理的铀供给。这一储备可以来源于过剩的军用高浓铀。

- 如果一个公正的专门小组审查认定从核燃料中重新提取钚是为了发电而获取较便宜的燃料，可向这一行动提供了财政保障。通过这种方式，一旦使用钚作燃料变得比较经济时，俄罗斯及其他政府就可以选择钚。

这些步骤应当能够缓解有关核反应堆燃料供应的担忧，并允许核燃料钚在近期内继续下去。美国、欧盟和日本将向此类活动提供资金和财政保障。

钚的玻璃化

为了确保钚不被用于制造核武器，我们有必要将其转变成一种不能用于制造核武器的燃料。实现这一目标的一种方法是，将钚与大剂量的玻璃熔液混合在一起，将其倒入金属容器中制成玻璃圆柱体。这一过程即为钚的玻璃化。玻璃圆柱体中铀的含量可以是一至几百分点的一部分，这个过程中的铀含量低，可以使之难以被窃取或提炼。通过增加需要储存或提炼的玻璃圆柱体的数量，从玻璃中重新提炼钚所需时间就足以完成，使钚更难于被重新获取。

美国和俄罗斯政府可以

通过创立某些机制来讨论有关核燃料的能源问题。这些机制是为消除那些认为从长远来看钚是一种极有价值的能源的人们的忧虑而建立的。我们建议采取如下两种补充行动：

- 建立用于反应堆的铀燃料国际储备，以此作为一种手段来
<table>
<thead>
<tr>
<th>名词</th>
<th>解释</th>
</tr>
</thead>
<tbody>
<tr>
<td>增殖反应堆</td>
<td>一种能够产出比本身消耗的更多的裂变材料的反应堆，绝大多数增殖反应堆利用快中子维持链式反应，因此它也称作“快速增殖堆”，不能生产出比本身所消耗的更多的裂变材料的快堆被称为“快中子反应堆”。</td>
</tr>
<tr>
<td>燃耗</td>
<td>单位核燃料产生的能量，计算单位通常为MWd/tHM。</td>
</tr>
<tr>
<td>电子</td>
<td>带负电的基本粒子。</td>
</tr>
<tr>
<td>增殖性材料</td>
<td>这种材料本身不是可裂变的，但可以转变成裂变材料，铀-238和钍-232是主要的增殖性材料。</td>
</tr>
<tr>
<td>裂变物质</td>
<td>一种其原子核吸收了一个低能（理想的情况是绝对零度能量）中子即可发生裂变的物质。可裂变物质能够维持链式反应。</td>
</tr>
<tr>
<td>核裂变的物质</td>
<td>一种经过低能中子轰击后可发生核裂变的物质。绝大多数这类物质可能维持核反应堆。</td>
</tr>
<tr>
<td>半衰期</td>
<td>一定量的放射性元素衰减一半所用的时间。</td>
</tr>
<tr>
<td>同位素</td>
<td>原子核中具有相同质量数但不同数量中子的元素的各种变体。元素同位素具有相同的原子序数，但是质量数不同。</td>
</tr>
<tr>
<td>减速剂</td>
<td>一种用于核反应堆中用于减慢裂变过程中产生快中子的物质。</td>
</tr>
<tr>
<td>中子</td>
<td>存在于各种物质中（除氢以外）原子核中一种中性基本粒子，自由中子衰变为一个质子，一个电子和一个反中微子。一个中子的质量约为一个电子的1.836倍。</td>
</tr>
<tr>
<td>核裂变</td>
<td>一个重元素的一个原子核分裂为两个较轻的原子核，通常伴随着一个或更多的电子的产生和能量的释放。</td>
</tr>
<tr>
<td>质子</td>
<td>与电子带电相同的带正电的基本粒子，约是电子重量的1836倍。</td>
</tr>
<tr>
<td>反应堆芯</td>
<td>反应堆的内芯包括燃料、减速剂（就热核反应堆而言）和冷却剂。</td>
</tr>
<tr>
<td>再（后）处理</td>
<td>从经辐照的核燃料中分离出铀、钚和裂变产物。</td>
</tr>
<tr>
<td>热核反应堆</td>
<td>一种利用热（或慢）中子维持核链式反应的反应堆。</td>
</tr>
<tr>
<td>玻璃化</td>
<td>制造玻璃的过程。在处理钚和核废料时，玻璃化意味着将其同玻璃熔液混合在一起，使之不易移动，但可安全保存和不轻易可以制造核武器。</td>
</tr>
</tbody>
</table>
美俄合作

在俄罗斯和美国有两个令人鼓舞的迹象表明它们在寻求稳健的核不扩散政策。美国不再将外国使用的核废料(尽管美国还在经营着一座军用后处理工厂)移往中国，并已开始在南卡罗来纳州萨凡纳河地区和纽约州西谷的强放射性核废料玻璃化工厂进行建设。俄罗斯通过其在切尔雅宾斯克-65的一座正在运营的工厂而在玻璃化高放射性核废料方面获得了比美国多得多的经验。俄罗斯还在圣彼得堡的锆研究所对不合作燃料的装填进行着装填玻璃化试验。俄罗斯已经取得的成果加上美国正在进行的研究，例如在萨凡纳河地区和橡树岭国家实验室进行的研究，都为双方就我们这个时代一个最紧迫的问题进行积极和互利的合作提供了基础。

克林顿总统和叶利钦总统现在已经决定一并将玻璃化钚，以防止钚流入黑市。作为第一步，俄美应该建立两个联合玻璃化试验工厂——每一个国家各设一个——作为双方在裂变材料安全方面技术合作项目的一部分。美俄应该同意关闭它们的后处理工厂，并不在核反应堆中使用钚。然后，它们可以共同努力去说服别的国家也关闭它们的后处理工厂。

只有美俄在武器用材料管理方面的伙伴关系才能促使其它国家寻求核扩散和环境污染问题的解决。尽管核处理方法和其使用从后处理钚这类技术问题转移到其他领域，无论是商用还是军用钚的潜在的转移问题都是全球问题，这需要全球共同努力去解决。

能源与环境研究所的“核材料危险”计划

能源与环境研究所自1985年成立以来，向美国的个人和组织提供了清晰和准确的信息、分析和培训。能源与环境研究所技术分析的完整性得到了广泛的认同，这也是确立我们作为向所有有关人士提供核问题方面信息的一个重要信息源的声誉。在有关核武器生产带来的环境危害、核扩散及核扩散以及裁军等一系列问题上，我们报告的价值得到决策者、活动家、学者和记者们的广泛肯定。

1996年年初，能源与环境研究所通过发行我们研究报道《致命裂变材料》的精校本，发行了一个向全球拓展的项目——“核材料危险”计划。这项新计划将向国际社会提供准确和易于理解的技术信息，就像我们在美国所做的那样。通过由在华盛顿举行的各国记者新闻发布会和同世界各地的记者进行新闻电话会议这两种形式组成的媒体扩展计划，我们希望能更加吸引公众的注意力。1996年4月我们在华盛顿举行了首次记者新闻发布会，会议的焦点集中在美俄可能采取的旨在减少钚和高浓缩铀所带来危险的联合措施上。

在该计划实施过程中，能源与环境研究所将其精选的材料译成俄、法、中、日等好几种语言。我们的材料有中文语种的版本，我们还计划从1996年年末起将所有报告的译本和概要发送到国际电子邮件
系统，并增加我们在网维网上的内容，以包括使用其他语种的栏目。能源与环境研究所旨在通过与各国活动家和记者的沟通与之建立联系，为公众提供参考工具，使他们能够有效地阐述其对有关核材料与核技术的看法。了解情况的公众便可以向现实的和潜在的核武器国家施加压力，使其停止危险材料的生产，停止开发可能增加核扩散问题的技术。

本刊《能源与安全》是此项“核材料危险计划”奠基的工作，它部分是以我们现有的时事通讯

《为民主行动的科学》为模型，《为民主行动的科学》主要在美国发行。由于我们的目的是将信息以各国读者的母语传递给他们，所以《能源与安全》主要是用英语、俄、法、日、中多种语言出版的。今后的《能源与安全》刊物将包括与本刊发行地区和国家有关的报告和世界各地科学家和活动家提供的文章。本期的《能源与安全》探讨了不同的能源选择，特别是讨论了核能以及它在全球能源生产中的作用。将于12月出版的下一期《能源与安全》报告将阐述再处理乏燃料和钚的问题。

核电及其在全球电力和能源中的作用

——阿米塔·塞斯汇编

表1 以一国的核电在其总发电量所占的比重从大到小的顺序，该表的上半部分包括了核电产量的产量。欧洲国家的核电装机容量的比重，它反映了这些国家在世界电力生产中的地位。从表中可以看出，核电生产在世界电力生产中占有重要地位。

<table>
<thead>
<tr>
<th>国家</th>
<th>核电在总发电量中所占的比重（一国的电力生产中）</th>
<th>总发电量（兆千瓦时）</th>
<th>总容量（兆瓦）</th>
</tr>
</thead>
<tbody>
<tr>
<td>法国</td>
<td>368,188</td>
<td>368,188</td>
<td>59,020</td>
</tr>
<tr>
<td>比利时</td>
<td>41,927</td>
<td>41,927</td>
<td>5,485</td>
</tr>
<tr>
<td>瑞典</td>
<td>61,395</td>
<td>61,395</td>
<td>9,912</td>
</tr>
<tr>
<td>西班牙</td>
<td>56,060</td>
<td>56,060</td>
<td>7,020</td>
</tr>
<tr>
<td>韩国</td>
<td>58,138</td>
<td>58,138</td>
<td>7,616</td>
</tr>
<tr>
<td>乌克兰</td>
<td>75,243</td>
<td>75,243</td>
<td>12,818</td>
</tr>
<tr>
<td>德国</td>
<td>153,476</td>
<td>153,476</td>
<td>22,657</td>
</tr>
<tr>
<td>日本</td>
<td>249,256</td>
<td>249,256</td>
<td>38,541</td>
</tr>
<tr>
<td>英国</td>
<td>89,353</td>
<td>89,353</td>
<td>11,894</td>
</tr>
<tr>
<td>美国</td>
<td>610,365</td>
<td>610,365</td>
<td>99,061</td>
</tr>
<tr>
<td>加拿大</td>
<td>94,823</td>
<td>94,823</td>
<td>15,437</td>
</tr>
<tr>
<td>俄罗斯</td>
<td>119,186</td>
<td>119,186</td>
<td>21,242</td>
</tr>
<tr>
<td>世界*</td>
<td>2,167,515</td>
<td>2,167,515</td>
<td>340,911</td>
</tr>
</tbody>
</table>

* 世界总发电量中包括以上所有国家发电量。

资料来源：《能源统计年鉴：1993》(纽约：联合国，1995年出版)。

表2把核电同其他电力资源进行了比较，尽管矿物燃料生产的电能仍然最为普遍，但整个世界总发电量的60%以上，但在某些地区其他能源也占有相当的份额。核电发电量的大多数，在南美洲，电力发电量达到总发电量的80%，相当矿物燃料发电量的4倍多和核电发电量的50多倍。
表2：世界电力生产分类表

（百万千瓦时）

<table>
<thead>
<tr>
<th></th>
<th>矿物燃料</th>
<th>水电</th>
<th>核电</th>
<th>地热和其他</th>
<th>总电量</th>
</tr>
</thead>
<tbody>
<tr>
<td>全世界</td>
<td>7,669,958</td>
<td>2,376,106</td>
<td>2,167,515</td>
<td>47,131</td>
<td>12,260,710</td>
</tr>
<tr>
<td>非洲</td>
<td>281,518</td>
<td>50,531</td>
<td>7,200</td>
<td>-</td>
<td>339,589</td>
</tr>
<tr>
<td>北美洲</td>
<td>2,491,646</td>
<td>641,208</td>
<td>709,994</td>
<td>30,195</td>
<td>3,873,043</td>
</tr>
<tr>
<td>美国</td>
<td>2,236,388</td>
<td>276,463</td>
<td>610,365</td>
<td>22,676</td>
<td>3,145,892</td>
</tr>
<tr>
<td>南美洲</td>
<td>97,291</td>
<td>410,479</td>
<td>8,192</td>
<td>-</td>
<td>515,962</td>
</tr>
<tr>
<td>亚洲</td>
<td>2,403,166</td>
<td>526,107</td>
<td>351,498</td>
<td>9,356</td>
<td>3,290,127</td>
</tr>
<tr>
<td>中国</td>
<td>685,153</td>
<td>151,800</td>
<td>2,500</td>
<td>-</td>
<td>839,453</td>
</tr>
<tr>
<td>印度</td>
<td>279,000</td>
<td>70,667</td>
<td>6,800</td>
<td>52</td>
<td>356,519</td>
</tr>
<tr>
<td>日本</td>
<td>550,181</td>
<td>105,470</td>
<td>249,256</td>
<td>1,798</td>
<td>906,705</td>
</tr>
<tr>
<td>欧洲</td>
<td>2,237,226</td>
<td>708,654</td>
<td>1,090,631</td>
<td>5,640</td>
<td>4,042,151</td>
</tr>
<tr>
<td>法国</td>
<td>35,336</td>
<td>67,894</td>
<td>368,188</td>
<td>-</td>
<td>471,448</td>
</tr>
<tr>
<td>德国</td>
<td>350,656</td>
<td>21,465</td>
<td>153,476</td>
<td>124</td>
<td>525,721</td>
</tr>
<tr>
<td>俄罗斯</td>
<td>662,199</td>
<td>175,174</td>
<td>119,186</td>
<td>28</td>
<td>956,587</td>
</tr>
</tbody>
</table>

资料来源：《能源统计年鉴：1993》（纽约：联合国，1995年）。

表3：1993年全球商业能源消耗

（10^15 焦耳）

<table>
<thead>
<tr>
<th></th>
<th>气体</th>
<th>液体</th>
<th>天然气</th>
<th>核能*</th>
<th>其他*</th>
<th>总量</th>
</tr>
</thead>
<tbody>
<tr>
<td>世界</td>
<td>93,981</td>
<td>119,407</td>
<td>77,921</td>
<td>23,599</td>
<td>9,966</td>
<td>324,873</td>
</tr>
<tr>
<td>非洲</td>
<td>3,130</td>
<td>3,859</td>
<td>1,548</td>
<td>78</td>
<td>195</td>
<td>8,805</td>
</tr>
<tr>
<td>北美洲</td>
<td>20,056</td>
<td>40,070</td>
<td>26,474</td>
<td>7,730</td>
<td>3,266</td>
<td>97,998</td>
</tr>
<tr>
<td>美国</td>
<td>18,863</td>
<td>32,093</td>
<td>22,362</td>
<td>6,645</td>
<td>1,684</td>
<td>81,751</td>
</tr>
<tr>
<td>南美洲</td>
<td>616</td>
<td>5,456</td>
<td>2,461</td>
<td>89</td>
<td>1,478</td>
<td>10,095</td>
</tr>
<tr>
<td>亚洲</td>
<td>42,131</td>
<td>34,132</td>
<td>13,443</td>
<td>3,827</td>
<td>2,260</td>
<td>95,830</td>
</tr>
<tr>
<td>中国</td>
<td>23,540</td>
<td>4,886</td>
<td>661</td>
<td>27</td>
<td>547</td>
<td>29,679</td>
</tr>
<tr>
<td>印度</td>
<td>6,281</td>
<td>2,264</td>
<td>460</td>
<td>74</td>
<td>255</td>
<td>9,338</td>
</tr>
<tr>
<td>日本</td>
<td>3,545</td>
<td>8,579</td>
<td>2,223</td>
<td>2,714</td>
<td>443</td>
<td>17,505</td>
</tr>
<tr>
<td>欧洲</td>
<td>26,231</td>
<td>34,095</td>
<td>33,109</td>
<td>11,874</td>
<td>2,569</td>
<td>107,852</td>
</tr>
<tr>
<td>法国</td>
<td>610</td>
<td>3,204</td>
<td>1,307</td>
<td>4,009</td>
<td>244</td>
<td>9,153</td>
</tr>
<tr>
<td>德国</td>
<td>4,115</td>
<td>5,158</td>
<td>2,669</td>
<td>1,671</td>
<td>78</td>
<td>13,724</td>
</tr>
<tr>
<td>俄罗斯</td>
<td>6,656</td>
<td>6,802</td>
<td>14,745</td>
<td>1,298</td>
<td>631</td>
<td>30,042</td>
</tr>
</tbody>
</table>

* 固体能源包括无烟煤、褐煤、泥煤和油页岩。液体能源包括原油和液态天然气。其他的电力主要是水电，但包括地热、风、潮汐、海浪和太阳能能源。核能已被转化为核能，计算方法为1,000千瓦时电能=372公吨煤炭。

** 不包括进出口。

注释：表3列出了能源投入（初级能源消耗），表2则列出了能源产出（以电的形式）。这就是本表“核能”一栏与“其他”（主要是水电）一栏以及表2中“水力”一栏与“核能”一栏之间存在明显的数据差异的原因。利用热能（如核能）发电其效率只相当于机械发电（如水力）的约三分之一。当利用核能和水力资源时同样数量的电能，在核能上的投入要比水力资源上的投入高三倍。为了使能源数据可以比较，同一栏应增加至37,000×10^13 焦耳。

资料来源：《能源统计年鉴：1993》（纽约：联合国，1995年）
表3着眼于更广泛的背景，它不仅仅考察电力生产，而且包括全部商业能源消费。1993年，非洲有7亿人口，占世界总人口的13%，但却仅消耗世界商业能源的3%，相比之下，北美和欧洲仅占世界人口的五分之一，却消耗了世界全部商业能源的几乎三分之二。

在所有商业能源资料中，人们对于矿物燃料的依赖是显而易见的。世界能源的90%来自于矿物燃料（主要是煤炭、石油和天然气），但是，有一些国家是从核能中获得相当可观数量的能源的，如在美国，1993年该国核电占其能源消耗总量的约44%。

表1—3中的数字以最近得到的联合国公布数据为基础，这些表格只考虑了商业能源的使用，因此不包括传统的能源资源，例如用于做饭和取暖的木材、动物粪便和农作物残余（统称为生物质），通过燃烧生物质而获取的能源几乎占世界能源消耗量的1%。在发展中国家，人们对生物质能源的依赖程度更大，燃烧生物量是他们最大的能源来源，约占其使用的全部能源的38%。由于这些燃料不需花钱即可找到，所以其价值和使用范围通常受到忽视。然而它们是几亿人唯一可以获取的能源资源。有一种重要的能源资源没有包括在这里，那就是薪柴提供的能源资源，这种能源资源在亚洲发挥着特别重要的作用。

同矿物燃料相比，以目前方式燃烧生物量取得的能源是低效率的，并带来种种健康和环境问题。随着资金的投入和研究的发展，生物质燃料可以被转化成先进的能源形式，从而奠定更清洁、更有效和可更新能源的基础，使之优于矿物燃料和核能。

计量单位

<table>
<thead>
<tr>
<th>单位</th>
<th>定义</th>
<th>计量单位</th>
</tr>
</thead>
<tbody>
<tr>
<td>瓦特</td>
<td>用来衡量能量生产消耗率的一种公制单位，1马力相当于746瓦。</td>
<td></td>
</tr>
<tr>
<td>焦耳</td>
<td>衡量能量的公制单位，相当于1瓦特的功率工作1分钟所产生的能量。</td>
<td></td>
</tr>
<tr>
<td>千瓦</td>
<td>一千瓦是计算电功率的通用单位。</td>
<td></td>
</tr>
<tr>
<td>千瓦时</td>
<td>一种能量单位，等于360万焦耳，是以1千瓦的功率工作1小时所产生的能量。</td>
<td></td>
</tr>
<tr>
<td>马力</td>
<td>一百万。马力是计算大型电站电量的通用单位。当它被用于电力生产时，它通常是指电力能力。</td>
<td></td>
</tr>
<tr>
<td>吉瓦</td>
<td>十亿（10^9）。1吉瓦（相当于1000兆瓦）大约是一座大型核电站的容量。</td>
<td></td>
</tr>
<tr>
<td>吉兆</td>
<td>万亿（10^12）。1吉兆（相当于1,000吉瓦）大约是1亿千瓦。</td>
<td></td>
</tr>
<tr>
<td>吉太</td>
<td>千兆兆（10^15）。大规模的能源用量通常用兆焦耳来计算。1公吨煤炭所含能量大约相当于290亿焦耳（联合国标准）。因此，1兆焦耳相当于34.500公吨煤炭。</td>
<td></td>
</tr>
<tr>
<td>百亿</td>
<td>百亿兆（10^18）。</td>
<td></td>
</tr>
</tbody>
</table>
各种反应堆的产电量**

<table>
<thead>
<tr>
<th>反应堆类型</th>
<th>轻水反应堆*</th>
<th>碳循环反应堆</th>
<th>混合反应堆</th>
<th>快速增殖反应堆</th>
</tr>
</thead>
<tbody>
<tr>
<td>兆瓦(电)</td>
<td>294,910</td>
<td>25,168</td>
<td>17,851</td>
<td>2,600</td>
</tr>
</tbody>
</table>

* 其中，压水反应堆（PWRs）占219,391兆瓦（电）, 沸水反应堆（BWRs）占75,519兆瓦。
** 其他类型的反应堆仅占少数（不到0.1%）。

资料来源：冯世所/万维网络上地址：（http://www.uilondon.org/reastats.html）。快速增殖反应堆的数据取自《世界上的核反应堆》一书（维也纳：国际原子能机构，1995年4月）, 日本“文殊”反应堆的280兆瓦已经加了，该反应堆1995年4月开始运转，现已关闭。

表5：各地核反应堆状况
（截至1996年5月）

<table>
<thead>
<tr>
<th></th>
<th>正在运转*</th>
<th>建设中</th>
<th>停建</th>
</tr>
</thead>
<tbody>
<tr>
<td>非洲</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>美国</td>
<td>110</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>北美其他国家</td>
<td>24</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>南美洲</td>
<td>3</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>日本</td>
<td>52</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>亚洲其他国家</td>
<td>31</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>法国</td>
<td>56</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>西欧其他国家</td>
<td>94</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>东欧</td>
<td>20</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>俄罗斯</td>
<td>29</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>乌克兰</td>
<td>15</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>其他地区</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>总计</td>
<td>441</td>
<td>32</td>
<td>25</td>
</tr>
</tbody>
</table>

* 包括五座于1996年5月已获许可但尚未运行的反应堆，它们分布于美国、亚美尼亚、加拿大、德国和印度。还包括四座已到了临界期，但已不再工作的反应堆，其中2座在日本，另2座分别在法国和罗马尼亚。

资料来源：冯世所/万维网络上地址（http://www.uilondon.org/netpower.html）。

矿物燃料和核能比较
（列表简要说明）
——阿琼·麦克费尼

表中进行的定量比较是以这样的假设为前提，即在日常运转和废料处理方面，人们在合理地注意环境保护条件下来操作核设施。如果这一假设并非事实，那么后果可能(并且通常是)极为糟糕。表格中有关气候变化的说明指的仅是采取某种特定的能源战略所带来的增量风险。由于向未来的能源战略过渡需要时间，所以核能和再生(资源)战略两者都将给我们带来前所未遇的问题。

尽管我们还不清楚地球对二氧化碳的准确的忍耐度和吸氧量，但地球似乎具有每年吸收30亿吨二氧化碳的能力。然而，现在的二氧化碳的年释放量为90亿吨，其中约三分之二是由矿
物燃烧产生的，其余则由于燃烧生物量所造成。

除了释放的二氧化碳外，矿物燃料开采和用于控制非二氧化碳物质向水和空气中释放的技术也造成环境的恶化，这对某些地区通常产生十分严重的影
响。而且，以目前的方式使用矿物燃料带来了气候变化的种种风险。这些风险将是灾难性的和不可逆转的。在矿物燃料中，释放单位分量的碳时，天然气所产生的能量最多。然而，凭借目前

<table>
<thead>
<tr>
<th>利用增殖反应堆的核能</th>
<th>利用一次性使用铀的核能</th>
<th>以目前方式利用的矿物燃料及可再生能源</th>
<th>限量使用矿物燃料及可再生能源</th>
</tr>
</thead>
<tbody>
<tr>
<td>目前经济条件下的能源基础*</td>
<td>具无限期前景</td>
<td>50-100年，或更长</td>
<td>几百年，具无限期前景</td>
</tr>
<tr>
<td>包括低级能源在内</td>
<td>无此要求</td>
<td>具无限期前景</td>
<td>几千年，无此要求</td>
</tr>
<tr>
<td>增量的气候变暖风险</td>
<td>无**</td>
<td>无</td>
<td>具有潜在的灾难性</td>
</tr>
</tbody>
</table>
| 潜在灾难性事故的后果 | 在大面积地区产生严重、持久的影响 | 在大面积地区产生严重、持久的影响 | 对大面积地区无严重后果，但可能存在区域性的影响。其影响通常是短期的，但巨大。
| 日常生活中大气污染 | 相对较小 | 相对较小 | 可不中控，取决于控制技术 |
| 日常生活中的水资源污染 | 存在 | 存在，但比利用增殖堆的系统小 | 不存在 |

* 参见正文。
** 由于堆系—中子链反应堆系统必须进行大规模的燃料后处理工作，人们提出由此产生的钚—85会影响云的形成，并产生潜在的气候变化。但是，通过低温冷却，钚—85是可以从废水中排除掉的。
的技术，特别是考虑到现在全世界大部分地区能源供给严重不足的情况。天然气本身还不能满足全球的能源需求。况且，在分子对分子的基础上，管道泄漏的天然气（甲烷）对全球变暖的作用要大大超过二氧化碳（尽管这一点还没有得到充分认识）。

在现今的条件下，核能日常释放的二氧化碳要比燃烧生物质少得多，但核能也有自己的祸端，比较明显的就是像切尔诺贝利那样的事故，切尔诺贝利事故给相当大的一部分地区带来了严重和持久的后果。此外，由于核电会产生大量的可用于制造核武器的材料，这一风险是矿物燃料所无法比拟的。

很明显，在当前条件下，使用核能和大规模使用矿物燃料都不利于制定一项稳健的环境政策。此外，从目前的燃料价格来看，无论是增殖反应堆还是再生反应堆（两种都可能是取之不尽的能源资源），都不能立即成为全球能源供给的基础。那么什么可以成为未来的安全与持久的生态能源呢？

如果可以减少矿物燃料的使用并在循环利用基础上使用生物量，使二氧化碳的年排放量低于30亿吨的话，那么矿物燃料可以成为比核能更好的能源形式，但需辅以其他类型的能源作补充。人们还可以通过经济的、环境效益好的碳转换器将二氧化碳吸收、存储或处理掉，而不是将其作为一种气体释放到大气中。这也使矿物燃料成为一种更好的能源资源。在向可再生能源经济交换过程中，矿物燃料可以作为一种过渡性燃料，限量使用。如果碳转换器被证明是经济的，也可以扩大使用矿物燃料。

例如，天然气可以作为向利用太阳能获取氢资源的方向发展中的过渡性能源，因为这两种气体燃料的基础设施是相似的。天然气的不足可以由可再生能源资源，例如，太阳能、生物质燃料（可重复产生和使用）以及风能，加以弥补。在明显条件下（例如在一些风速大、日照强而雨量少的地区），风能和太阳能是很经济的。在“目前的经济条件”下，降低开发此类能源的技术成本或燃料及石油价格，使得上述能源技术有着无限前景，合理地使用矿物燃料（可重复产生和使用）和可再生能源，并使之以可不断提高能源效率的措施，将会为寻找未来经济与持久的能源提供最佳的选择方案。
《核荒地——对核武器生产及其健康与环境影响的全球指南》
由阿琼·麦克贾尼、霍华德·胡和凯瑟琳·伊编辑，麻省理工学院出版社1995年出版。
该书是一本面向学者、学生、决策者、记者及和平与环境活动家准确提供每一个公开或事实上的核大国和核武器计划发展历史的手册。全面的历史资料和分析使政府隐瞒核武器对其所保卫的人民和土地所带来的危险的秘密和全部欺骗曝光。
1995年8月9日乔纳森·史特尔在英国《卫报》这样评论：“未来有关核武器的研究如果不参考本书，将是令人信服的。”
该书为硬皮装订，共有666页，定价为55美元，折扣价为40美元。

《玻璃中的裂变材料》
作者是阿琼·麦克贾尼和安妮·麦克贾尼，该书于1995年由能源与环境研究所出版社出版，目前在俄罗斯也可以买到。
该书分析了处理铀和高浓缩铀的各种方法，急切呼吁美国把玻璃化铀作为其处理钚的方案(而不是将其用于反应堆)，以便其能够说服那些还在从民用核废料中提取钚的国家停止这方面的工作。
美国能源部负责环境恢复和废料处理的副总长汤姆·格兰布里写道：“如果再说我在这个领域(裂变材料处理)遇到过什么问题的话，那就是我缺乏这本书中提供的那种现实的选择方案，这也是我对该书热切的原因。”
该书为平装本，共有126页，售价12美元。

《钚——核时代的致命黄金》
由国际医师预防核试验组织与能源与环境研究所合著，国际医师出版社1992年出版。平装本，178页，售价17美元。该书在日本、法国和德国亦有出售。

《放射性天空和大地——地球内外核试验对健康和环境的作用》
由国际医师预防核试验组织与能源与环境研究所合著，Zed出版社1991年出版。平装本，共有193页，售价17美元。

《核安全烟幕——弹头安全与可靠性和基于科学的库存管理计划》
这是能源与环境研究所1996年的一份报告，售价10美元。
俄罗斯和中国可以免费得到该报告的内容提要。

国际邮寄及装订
每本《核荒地》另加15美元；其他每本另加5美元。

可免费获得的材料：
钚的物理、核和化学性质
铀：用途及危险
放射性和核废料的焚烧
在俄罗斯亦可得到
参见我们在万维网 http://www.ieer.org 地址上的网络材料，可以很容易地得到免费材料及我所其他的信息，包括通过网络进行的技术培训、技术报告以及我们著作的精选。
有关钚问题：

《国际核废料处理事实报告》
C.W.亚伯拉姆斯，M.D.柏特里奇和J.E.威德里格合著
由华盛顿的太平洋西北国家实验室(服务予美国能源部)于1995年11月出版。
这本书为各机构的有关核设施、机构和人员的全面数据。
发行范围：全世界

《1992年全世界的钚和高浓缩铀存量》
戴维·达尔布赖特，弗朗斯·伯克豪特和威廉·沃克合著
牛津大学出版社1993年出版。
该书在可用于制造核武器的钚和高浓缩铀方面提供了全面、可靠的
公众信息和可观的历史信息。本期的时事通讯中出版了某些最近的信息。
发行范围：全世界

《分离出的钚的处理》
弗朗斯·伯克豪特，阿纳托利·迪亚可夫，哈罗德·费弗逊，海伦·亨特，
马文·米勒和弗兰克·冯·希波合著。载《科学与全球安全》1993年
3月号，第161-213页。
该文详尽分析了处理钚的各种选择方案，其中包括安全储存、混合氧化物燃料和玻璃化，还对分离出的来源进行了讨论。
发行范围：全世界

《限制可用于制造核武器的裂变材料的扩散》
布赖恩·G·乔和肯尼思·A·所罗门合著。由兰德公司于1993年出版。
该书分析了反应堆利用钚的成本，证明由于铀价较低，所以使用混合氧化物燃料会入不敷出。
发行范围：全世界

《第一个50年——1944年到1994年美国钚的生产、获得和使用》
美国能源部于1996年2月发表。
该书包含美国能源部长奥莱利“公开性动议”的部分内容。该动议使
得以前与各种核武器有关活动的信息公诸于众。该书包括有关美国
钚的大量信息，其中包括有关详细地点的特殊资料，也包括美国进
出钚的资料。
发行范围：主要在美国

《能力建设小组就与该部钚贮存有关的环境、安全和健康脆弱
性问题发表的报告》
美国能源部于1994年9月出版。出版号：DOE/EH.0415。
该报告讨论了冷战结束时遗留下来的多种形式的钚和钚残留物的储
存所带来的问题，还讨论了由于放射性分解而带来的储存容器的毁
坏问题，例如形成可燃气体等。
发行范围：美国
如需能源部资料的副本，联系地址为：U.S. Department of Energy, 1000
Independence Avenue, SW, Washington, DC 20585, USA.
《文殊快增殖反应堆》
1994年于日本出版。
该书提供有关快堆的技术信息，以及全世界特殊快堆计划的详细内容，其中重点放在文殊反应堆。

《过剩武器的管理和处理》
美国国家科学院国际安全与军备控制委员会于1994年出版，英文版和俄文版。
该书全面回顾了美国处理过剩武器级钚的各种方案，推荐了三种选择方案供参考：将钚用作混合钚-铀氧化物燃料，玻璃化钚和深钻孔贮钚。该书指出，由于铀价低廉和生产混合氧化物燃料的高成本，把钚当作燃料来使用会入不敷出。
发行范围：除了讨论俄罗斯的部分外，主要在美国
若想获得与1995年报告有关的详情，请参阅本刊第1期文章《作为能源的钚》。
如需获得美国国家科学院报告的复件，联系地址：Committee on International Security and Arms Control, U.S. National Academy of Sciences, 2101 Constitution Avenue, NW, Washington, DC 20055; cisac@nas.edu

《钚问题国际会议》
1993年日文版出版。
该书从1991年的钚问题国际会议开始，广泛讨论了与利用钚作能源有关的问题，其中包括有关混合氧化物燃料的信息、对钚运输的忧虑和扩散危险。

《美国和苏联核武器的裂变材料》
冯·希波，D·阿尔布赖特和B·莱维合著，PU/CEES报告第168号，普林斯顿大学能源与环境研究中心，1986年。
内容包括在最近几年的销毁之前对美国和俄罗斯武器级裂变材料生产的估测；可以提供在估测技术方面的有用信息，具体而言，苏联每年生产的钚产量是通过对全世界的武器级工厂所释放出的钚-85的评估来加以估测的。对于理解非政府部门科学家们用以说服政府扩大资料的公开性的估测根据，是大有帮助的。
有关能源问题：

《能源的近未来的能源革命指南》
克里斯托弗·弗莱文和尼古拉斯·伦森合著。W.W.诺顿公司1994年出版。
本书详尽地分析了可再生能源的状况。

《未来年代的能源》
“Echo-Vostok”信息机构，季刊，1996年起，俄文版和英文版。
该季刊重点放在能开发和持续能源的技术上。在俄罗斯可以找到该刊的俄文印刷本。该杂志的英文版（仅电子版形式）由华盛顿特区的可再生能源和持续技术中心编辑，并可以通过网址：http://solstice.crest.org进行阅读。
《能源与安全》是一份报导核不扩散、裁军和能源可持续性的时事通讯刊物。由能源与环境研究所一年发行4次。该研究所的地址为：6935 Laurel Avenue, Takoma Park, MD 20912, USA.

能源与环境研究所 (IEER) 就广泛的问题向公众和决策者提供有见地的，明确的和稳妥的科学和技术研究报告，该研究所旨在向公共政策事务提出科学的意见。以促进科学的民主化和更健康的环境。

能源与环境研究所成员：
所长：
执行主任：
图书馆员：
工程师：
高级科学家：
编辑员：
项目科学家：
对外协调员：
全球协调员：
行政助理：

感谢我们的支持者

我们衷心感谢我们的资助者，是他们慷慨资助使我们能够进行自己的“核材料危机”全球计划。
我们的资助者是 W. Alton Jones Foundation, John D. and Catherine T. MacArthur Foundation 和 C.S. Fund

我们还要感谢我们的基层技术支援计划的资助者，该计划为我们的全球工作提供了广泛帮助。
该计划的资助者是 Public Welfare Foundation, John Merck Fund, Ploughshares Fund, Unitarian Universalist Veatch Program at Shelter Rock, Rockefeller Financial Service, Stewart R. Mott Charitable Trust 和 Town Creek Foundation

本期刊物英文版的设计由华盛顿特区的 Cutting Edge 图象公司承担。照片取自电力反应堆和核燃料开发公司和美国能源部布赖恩·史密斯。