Renewable Maryland

Background and context for developing a Renewable Maryland Roadmap

Prepared by IEER for January 14, 2013, stakeholder meeting in Annapolis, Maryland

Convened by Town Creek Foundation

Arjun Makhijani, Project Director

Christina Mills, Project Coordinator

MD: Not doing too well in GHG emissions (2050 goal – 23 million metric tons).

GHG emissions Maryland – historical and state projections. Energy related emissions (CO2, CH4, N2O) ~91 percent

Figure ES-2. Maryland Gross GHG Emissions by Sector, 1990-2020: Historical and Projected

RCI - direct fuel use in residential, commercial, and industrial sectors. ODS - ozone depleting substance.

GHG emission reductions assessment

- A nearly CO2-emissions-free electricity sector is essential to major greenhouse gas reductions, 80 percent or more, by 2050 (or earlier).
 - On the order of 90 percent or more needed in the whole energy sector.
- We have shown it is technically and economically feasible in one state.

Major question for the Renewable Maryland Project: how to get a CO2 emissions-free electricity sector formally adopted as a state-wide goal and ensure that it is combined with a practical set of policies and milestones to ensure we get there?

• The Renewable Maryland project seeks, with your participation, to answer that question.

MN: One week in the winter: wind + solar + hydropower/biomass storage meeting demand 24/7.

MN: One week in the summer: wind + solar + hydropower /biomass + storage meeting demand 24/7.

Relational system peak: relation solar and wind supply to demand

Number of hours each tranche of storage capacity is used

Storage states, hour-by-hour, 2007 data

Storage in 2007 at beginning of hour, MWh

Base case: Solar and wind \$2000/kW from 2025 onward

	Base case	Efficiency Tranche 1	Efficiency Tranche 2
Level of efficiency	No efficiency	Medium efficiency	High efficiency
	change	(33%)	(additional 17%)
Cost, \$/MWh	\$176 for	\$30 for efficiency	\$100 for efficiency
	generation	Tranche 1	Tranche 2
Average cost of electricity services \$/MWh at	\$176	\$128	\$115
different efficiency levels			
Annual services supplied by generation, MWh	8.68	5.82	4.34
Annual services supplied by efficiency, MWh	0	2.86	4.34
Annual elec. bill for generation	\$1,529	\$1,024	\$764
Annual cost of efficiency	\$0	\$86	\$234
Total annual cost for residential electricity	\$1,529	\$1,110	\$998
services			
2010 cost	\$920	\$920	\$920
Annual cost difference	\$609	\$190	\$78

Solar and wind \$1,500/kW in 2025

	Lower cost case	Efficiency Tranche 1	Efficiency Tranche 2
	No efficiency	Medium efficiency	High efficiency
	change	(33%)	(additional 17%)
\$/MWh	\$154	\$30	\$100
Average cost of electricity services \$/MWh at different efficiency levels	\$154	\$113	\$104
Annual services supplied by generation, MWh	8.68	5.82	4.34
Annual services supplied by efficiency, MWh	0	2.86	4.34
Annual elec. bill for generation	\$1,336	\$895	\$668
Annual cost of efficiency	\$0	\$86	\$234
Total annual cost for electricity services (generation plus efficiency)	\$1,336	\$981	\$901
Total annual cost for in 2010	\$920	\$920	\$920
Cost difference: renewables – 2010	\$416	\$61	(\$19)

Conclusions of the Minnesota study

- A fully renewable electricity sector is technically feasible. Resources are plentiful and can accommodate growth.
- Cost is at the lower end of estimated nuclear costs (without taking account of nuclear subsidies such as insurance and uncertainties about waste, and project delays)
- Would create roughly 50,000 jobs (continuous, but not net)
- Without efficiency, the cost of will likely be higher, but with efficiency the overall cost of electricity services would be about the same
- Can be made more efficient using demand dispatch and other technologies, probably more economical by reducing relational peaks, storage requirements and spilled energy
- Attention needs to be paid both to short term and seasonal variations in demand, and in relation to solar and wind supply

Bills, rates, and demand: an initial analysis

2009 Annual Residential Consumption and Rates

Renewable MD: overcome the limitations of MN and UT studies

Technical and economic feasibility of a fully renewable electricity sector demonstrated, but gaps remain to actually get the goal adopted.

- No connection to existing short and medium term policies
- Single centralized energy storage (compressed air) with siting issues
- In-state renewable resources only.
- Natural gas not taken into account
- No consideration of distributed grids, microgrids, demand dispatch
- Little coordination in advance with groups seeking legislative, regulatory changes towards an emissions free economy.
- No continuing process to ensure updates and relevance to changing technology, economics or legislative and regulatory opportunities.
- Getting one state to see that 80% GHG reductions translates to approximately 100 percent renewable electricity sector would be a huge advance.

Project Overview

- Connect the long-term goal of an emissions-free energy sector (phase out all fossil fuels at the latest by 2050) in Maryland to potential intermediate steps.
- Tentative starting point: three studies that will progressively feed into each other followed by an integrated roadmap putting it out there as one starting point for discussion
 - Buildings and distributed energy production/microgrids/demand dispatch (includes efficiency, electricity and natural gas)
 - Transportation, including efficiency, electrification of transportation and connection to distributed generation and demand dispatch
 - Large scale supply for remaining energy sector
 - Integration of the various elements, with milestones

Questions for group

- How does your work connect to this on a day-to-day basis?
- Is it realistic to have a vision of 100 percent or close to 100 percent renewable electricity sector adopted as part of 80% GHG reductions?
- What kinds of milestones dates, specific efficiency and renewable supply goals, microgrids, smart grid would be useful?
- Is the existing plan for a buildings and distributed supply study, transport study, and supply study reasonable?
- How to connect our technical work with your advocacy on a routine and ongoing basis?
- How to make sure that the overall direction and technical analysis stays relevant with changing costs and legislative and regulatory opportunities.

Process

- Active advisory group.
- Blog for stakeholders to provide opinions and suggestions?
- Update meetings or conference calls?