Properties of Plutonium Isotopes

The <u>plutonium</u> isotopes listed below are "fissionable," which means that the nuclei can be split into two fragments, called <u>fission</u> products. In addition to being fissionable, <u>plutonium</u>-239 and <u>plutonium</u>-241 are "fissile" – that is, they can be split by neutrons of very low (ideally zero) energy. This means that they can be assembled into a <u>critical mass</u>, and hence can sustain a chain reaction without an external source of neutrons. To help you learn more about the properties of Plutonium, <u>check out this worksheet on</u> <u>Plutonium!</u>

Important Radiological Properties of Plutonium Isotopes		Pu-238	Pu-239	Pu-24
	Half-life (in vears)	87.74	24,110	6,537
	Specific activity (curies/gram)	17.3	0.063	0.23
	Principal decay mode	alpha	alpha	alpha spont <u>fissio</u>
	Decay energy (MeV)	5.593	5.244	5.255
	Radiological hazards How <u>isotope</u> is produced	alpha and weak gamma nuclear reactors	alpha and weak gamma nuclear reactors	alpha gamn nucle
	Main uses	Production of thermoelectric power used in nuclear weapons satallites, and heart pacemaker	Fissile material for nuclear weapons, and for the production of energy	none r f

Source: CRC Handbook of Chemistry and Physics, 1990-1991. Various sources give slightly different figures for half-lives and energies.

Notes:

- 1. Source of neutrons causing added radiation dose to workers in nuclear facilities. <u>? Return</u>
- 2. Plutonium-241 decays into Americium-241, which is an intense gamma emitter. ? Return

Published on 1996-04-17 Last modified on 2012-04-26