

Types of Nuclear Reactors

(originally published in IEER's report The Nuclear Power Deception)

Nuclear reactors serve three general purposes. **Civilian reactors** are used to generate energy for electricity and sometimes also steam for district heating; **military reactors** create materials that can be used in nuclear weapons; and **research reactors** are used to develop weapons or energy production technology, for training purposes, for nuclear physics experimentation, and for producing radio-isotopes for medicine and research. The chemical composition of the fuel, the type of coolant, and other details important to reactor operation depend on reactor design. Most designs have some flexibility as to the type of fuel that can be used. Some reactors are dual-purpose in that they are used for civilian power and military materials production. The two tables below give information about civilian and military reactors.

Types of Nuclear Reactors – Table 1

Reactor Type	Light Water Reactor (LWR)		Heavy Water Reactor
	a. Boiling Water Reactor	b. Pressurized Water Reactor (PWR)	(HWR)
Purpose [1]	electricity	electricity; nuclear powered ships (U.S.)	electricity; <u>plutonium</u> production
Coolant Type	water (H ₂ O)	water	heavy water (deuterium oxide, D_2O)
Moderator Type	water	water	heavy water
Fuel — Chemical Composition [2]	uranium-dioxide (UO2)	uranium-dioxide	uranium-dioxide or metal
Fuel – Enrichment Level	low-enriched	low-enriched	natural uranium (not enriched)
Comments	steam generated inside the steam is generated outside used in Canada: called reactor goes directly to the reactor in a secondary "CANDU" – "Canadian		
	the turbine	heat transfer loop	Deuterium Uranium;"
			Also used in Savannah
			River Site reactors (metal
			fuel at SRS)

Types of Nuclear Reactors – Table 2

	Reactor Type	Graphite Moderated Reactor		Fast Breeder Reactor
				(FBR)
		a. Gas Cooled	b. Water Cooled	Liquid Metal (LMFBR)
				(most common type of
				breeder)
Purp	ose	electricity; plutonium	electricity; plutonium	electricity; plutonium

Institute for Energy and Environmental Research Celebrating 25 years of science for democracy

http://ieer.org

	•		
	production	production	production
Coolant Type	gas (carbon dioxide or	water	molten, liquid sodium
	helium)		
Moderator Type	graphite	graphite	not required
Fuel — Chemical	uranium dicarbide (UC ₂)	uranium dioxide (RBMK)	plutonium dioxide and
Composition	or uranium metal	or metal (N-reactor)	uranium dioxide in
			various arrangements
Fuel – Enrichment Level	slightly-enriched, natural	slightly-enriched	various mixtures of
	uranium		plutonium-239 and
			uranium-235
Comments	used in Britain, and	used in former Soviet	breeder reactors are
	France (e.g.: AGR,	Union, e.g. Chernobyl	designed to produce more
	MAGNOX)	(RBMK); N-reactor at	fissile material than they
		Hanford.	consume. Monju; Phenix

Source: Lamarsh, John, Introduction to Nuclear Engineering, (Reading, MA: Addison-Wesley publishing Co., 1983), 120-143.

Notes:

- 1. The purpose of the reactor does not depend on the choice of coolant or moderator, but rather on reactor size and on how the reactor is operated, and on what ancilliary materials are put into fuel rods besides fuel. The same reactors can, in principle, be used for electricity production, military plutonium production, and production of other radioactive materials such as tritium for military and civilian applications. The purposes listed in this column are the common ones to which such reactors are or have been put. This note applies to both tables. ? Return
- 2. Not all fuel types necessarily included. This note applies to both tables. ? Return
- 3. The enrichment of fuel refers to the percentage of the isotope of uranium-235 compared to uranium-238 present in fuel. It is defined here as follows: slightly enriched uranium = about 0.8 to 3%; low enriched uranium = 3 to 5 %. This note applies to both tables ? Return