The German Energy Transition

The Heinrich Böll Foundation has created a new site to inform the public about its historic energy transition or “energiewende”: http://www.EnergyTransition.de The aim is the reduce greenhouse gas emissions by 80 percent by 2050. A renewable electricity sector is a principal part of this goal. Germany already produces 26% of its electricity and is set to exceed the target of 40% by 2020. As evidence for severe climate disruption mounts, the German energiewende provides some hope. This kind of transformation was a gleam in my eye when I finished Carbon-Free and Nuclear Free in 2007. It was my hope for the United States. I still hope that action by states, corporations, individuals, and even the federal government (though CO2 rules, efficiency standards, etc.) will get us to a fully renewable energy sector by 2050 in the United States and worldwide.

— Arjun

Is there a role for small modular reactors?

On November 20, President Obama announced funding to develop small modular reactors. The US went from small reactors to large ones to get economies of scale. Power reactor generating capacity goes up faster than material costs — one of the sources of economies of scale. Despite that, large reactors are very expensive and the so-called nuclear renaissance is sputtering. So now the new nuclear nirvana is going back to small reactors. It is unlikely to work. Government should not still be subsidizing nuclear 55 years after the first “commercial” nuclear power plant came on line in 1957. Like the first time, government is rushing in without due consideration of many of the problems.

For more information on SMRs and their potential problems, see the IEER-PSR factsheet.

— Arjun

After Sandy: Mitigation or Adaptation?

Arjun Makhijani [1]

A decade ago, concern about climate disruption focused mainly on mitigation. How could the world drastically reduce greenhouse gas emissions to curb the severity and frequency of extreme weather events? With global treaty efforts in tatters and Washington in gridlock however, the focus began to shift to adaptation. How can the damage from climate change be reduced?

Even a cursory look at the destruction wrought by Hurricane Sandy – a waterlogged landscape, natural gas explosions, devastating fires, shortages of food, water, and gasoline, and vast areas without electricity — makes it clear that we must do both.

Thoroughly revamping the country’s century-old electrical infrastructure is a critical starting point. We need a system that is much more resistant to damage and recovers quicker. One way to accomplish both goals was illustrated at Japan’s Tohoku-Fukushi University after last year’s devastating tsunami. The university’s electric power generation system consists of local natural gas-fired generators, fuel cells, solar photovoltaics, and storage batteries. Because of this microgrid, essential facilities, including the water plant, elevators, lighting kept functioning even as much of the rest of the larger grid was swept away. That allowed vital nursing facilities, clinic and laboratory equipment to keep running. (Learn more about the Tohoku-Fukushi microgrid and about other microgrid examples at the Lawrence Berkeley Lab website)

Courtesy of DOE/NREL, Credit – Connie Komomua.

Normally, a microgrid functions as part of a larger regional or national system. Electricity is generated, stored and supplied locally. At the same time, power is exchanged with the rest of the grid to reduce costs and maintain a high level of reliability and performance. In an emergency, however, a microgrid will cut itself off automatically from the stricken network. Instead, it goes into “island” mode, continuing to supply local customers essential needs. That would prevent problems like the one during Hurricane Sandy when an explosion at a single substation caused a massive blackout in Lower Manhattan. Of course, microgrids cannot protect specific locations from flooding or damage. That is a different kind of problem. But with a system of interconnected microgrids, much of the essential equipment in Lower Manhattan out of the reach of flooding would have kept operating.

Putting microgrids at the core of the transformation of the electrical system will end total dependence on a vulnerable, overly-centralized system. The replacement will be a distributed, intelligent system whose essential parts are much more likely to function without disruption during extreme events. In addition, a system based on microgrids is also well-matched to greatly increasing efficiency of electricity use. The higher the efficiency of use, the larger the number of functions a micro-grid in island mode can supply. Higher efficiency also means that a much larger part of the economy can keep functioning at any given level of power. Buildings that are well insulated will stay warm longer without the heating system functioning; food will be preserved much longer without power in highly efficient refrigerators. Crucially, this technology, built for adapting to climate disruption will also mitigate it by helping to reduce greenhouse gas emissions.

As they consider how to protect the region from extreme storms and floods, Governors Christie and Cuomo and Mayor Bloomberg should appoint a task force to create a roadmap for building a distributed resilient efficient and intelligent grid in New York City, Long Island and the Jersey shore. Such a project could be the core of the infrastructural transformation that is needed all along the Gulf and Atlantic Coasts. Interconnected microgrid networks can enable people and the economy to flourish in the new normal of more frequent and more violent weather events.

Notes:

  1. Arjun Makhijani is senior engineer and president of the Institute for Energy and Environmental Research; he has consulted with electric utilities and several agencies of the United Nations on energy issues. ↩ Return

Bad News on Climate; Good News on Energy

My February 26, 2008 op ed in the Dallas Morning News seems to have excited a great deal of interest, including on this blog. I really enjoyed my speaking tour of Texas, including being on the Dallas PBS TV program named Think, talking about Carbon-Free and Nuclear Free. See the video here.

(Dr. Egghead’s philosophical disclosure: Descartes could have done better than “€œI think therefore I am.” I prefer what the French do rather than what their philosophers say: “€œI eat therefore I am” and also “€œI am therefore I eat.”)

Watch the video anyway. You’€™ll like it. Krys Boyd was a really knowledgeable and gracious host at KERA TV. If you love my mellifluous voice on that, see clips from one of my Dallas area speeches, courtesy of the Dallas Peace Center.

There is bad news on climate and good news on energy.

One of the indicators of a warming Earth is the extent of summer Arctic Ice melting. Last summer’€™s melting was not only the worst since measurements began, but the rate of change increased drastically. Here is a chart showing model projections (the red and the dashed lines) and actual satellite measurements (heavy black line)

Great Arctic Ice Melt of 2007

Chart of IPCC's modelling predictions to the end of the century versus actual satellite measurements.

Chart is courtesy of Dr. A. Sorteberg, Bjerknes Centre for Climate Research, University of Bergen, Norway.

The previous worst case estimate for complete summer melting was about 2070. Now it may be less than a decade. We cannot afford to wait for time to tell us whether this worst case will come about. We must act. Two climate scientists, H. Damon Matthews of Concordia University and Ken Caldiera of the Carnegie Institution of Washington, recently published an article in Geophysical Research Letters, analyzing the long-term requirements for protecting climate and concluded as follows:

“We have shown here that stable global temperatures within the next several centuries can be achieved if CO2 emissions are reduced to nearly zero. This means that avoiding future human-induced climate warming may require policies that seek not only to decrease CO2 emissions, but to eliminate them entirely.” [emphasis and color added]Source: H. Damon Matthews and Ken Caldeira, Stabilizing climate requires near-zero emissions, GEOPHYSICAL RESEARCH LETTERS, VOL. 35, XXXX, 2008. (prepublication)

See a New Scientist article about this paper

There is good news to offset the bad news: My book Carbon-Free and Nuclear-Free shows that we do no€™t have to go to the poor house to eliminate carbon dioxide emissions from fossil fuels. We can have a flourishing economy and protect climate. Wind energy in good areas is already cheaper than nuclear or competitive with it. The country needs sensible rules for investment in transmission lines to create more of a boom in wind. It’€™s already happening in Texas, which has such rules; some oilmen like T. Boone Pickens see wind farms as the future of energy. See the New York Times article.

In the United States, the area of parking lots and commercial building rooftops is large enough to supply much or most of its electricity requirements. And Nanosolar, located in Silicon Valley, is all set to make solar panels on a large-scale for less than a dollar watt (plus installation). That means solar electricity is likely to make nuclear energy economically obsolete by the time the first proposed new nuclear plants come on line (if all goes according to the nuclear industry’€™s plans), making for another generation of economic lemons, for which ratepayers and taxpayers will pay a heavy price. Why go there?

New Zealand has announced a goal of zero CO2 emissions without nuclear power by mid-century. Why not the United States? Declaring that to be a goal and enacting the tough policies that will be needed could work wonders for restoring the positive image that most of the world’€™s people once had about the United States, which has fallen into sad disrepute abroad in recent times.

S. David Freeman, former Chairman of the TVA, noted in his Foreword to my book, that it will take “determination and guts …[to] achieve a renewable energy economy.” That means your involvement. Take the message of Carbon-Free and Nuclear-Free to the candidates of all parties, independent of those whom you personally support; ask them if they are familiar with Carbon-Free and Nuclear-Free, which shows we can live well without fossil fuels or nuclear power.

You can do more. Link to this blog; comment on it; make it the go-to place for energy commentary, discussion, and Q&A about the energy problems of our time. Read my book. Download it free. Discuss it in your book club.

Posts to come: On China and India; on efficiency; on the coming generation of passenger vehicles.

–Arjun

Carbon-Free and Nuclear-Free is getting an enthusiastic response, but several new nuclear facilities are planned


I have been going around the country speaking about my new book, Carbon-Free and Nuclear-Free: A Roadmap for U.S. Energy Policy. (Download it free)

Nothing I have done in 37 years of work on energy, environment, and nuclear weapons and power issues has caught on like this.

As evidence of serious and rapid climate change mounts and a price on carbon emissions looks more and more certain, companies’ coal-fired power plants are hard to justify and harder to finance. So the nuclear industry wants to ride into town as the savior. Having failed to deliver electricity “too cheap to meter” (promised in the 1950s by the Chairman of the Atomic Energy Commission, Lewis Strauss), it now wants massive new government subsidies in the form of loan guarantees.

But it is a false choice. Those who oppose nuclear power as the “solution” to the global climate crisis are right: a combination of efficiency, renewable energy, combined heat and power, and emerging technologies such as plug-in hybrid cars can allow us to phase out all fossil fuels and nuclear power in 30 to 50 years.

Eight new nuclear reactors are being proposed in Texas alone. The two near Amarillo, in the panhandle, will consume 60 million gallons of water every day—more than what the entire city uses. The company proposing the plant has said there is a lake there in an unidentified location that will supply the water. In Idaho, the CEO of Alternate Energy Holdings, which wants to build a power plant there, implies that nuclear power will cost only 1 to 2 cents per kilowatt-hour, because capital cost is borne by the investors, as if Wall Street were a kind of charity for electricity consumers. Far from it. Wall Street got burned by nuclear power in the 1980s; it is leery of financing them. That’s why the nuclear industry has the largest hat in hand in Washington, D.C. asking for handouts such as license application subsidies and 100 percent loan guarantees.

But at least some investors are catching on. Mid-American Energy, owned by Warren Buffet’s Berkshire Hathaway, announced last month (January 2008) that it was abandoning plans to build a nuclear power plant in Idaho because it could not provide economical power to its customers. Austin Energy, the city-owned utility in the capital of Texas, has recommended that the City vote not to buy a share of the two proposed reactors near Bay City Texas. The investment would, at this time, be “unwise” and imprudent” said the utility, because of insufficient time to examine the paperwork and the risk of cost overruns and delays.

Here is a link to a summary of my book (Note: 2.5 MB pdf)

and to an op ed I recently wrote for the Deseret News (Salt Lake City)

I invite you to comment on the analysis in my book, on what you are doing in your neighborhood, city, county, or state regarding energy and climate and to link to my blog.

–Arjun

PO Box 5324 · Takoma Park, Maryland, 20913 USA · Tel. 1-301-509-6843 · E-mail: