The last few months have seen some definite signs that commercial nuclear power is not the wave of the future but a way of boiling water that might be seen as a twentieth century folly. Four commercial nuclear reactors have been shut permanently ostensibly for different reasons, but economics underlies them all.

Crystal River in Florida came first, in early February 2013. It had been shut since 2009. Like many other pressurized water reactors, it had to have a premature replacement of its steam generators, the huge heat exchangers were the hot reactor water (“primary water”) heats up water in the secondary circuit to make the steam the drives the turbine-generator set. The outer layer of the containment structure cracked during the replacement. Duke Energy, the owner, determined it was too costly to fix the problem. See Duke’s press release at http://www.duke-energy.com/news/releases/2013020501.asp

The 556-megawatt Kewaunee reactor in Wisconsin came next, in early May, unable to compete with cheap natural gas and falling electricity prices. Indeed, electricity consumption in the United States is declining even as the economy recovers from the Great Recession due in part to the increasing efficiency of electricity use. There doesn’t appear to be enough money in the reserve fund for decommissioning at present – see the New York Times article at http://www.nytimes.com/2013/05/08/business/energy-environment/kewaunee-nuclear-power-plant-shuts-down.html.

San Onofre, with two reactors, came next. Both had been down since early 2012, when excessive wear of steam generator tubes and leaks of primary water were discovered. The steam generators were new, but contrary to the company’s claims, it turned out that the new ones were not copies of the original licensed design. A long, contentious process followed; prospects for a green light to restart faded. The blame game between the supplier of the steam generators, Mitsubishi, and the majority owner, Southern California Edison grew intense (and it continues). Announcing the decision to close the plant, the SCE President Ron Litzinger said: “Looking ahead, we think that our decision to retire the units will eliminate uncertainty and facilitate orderly planning for California’s energy future.” (See the La Times article at http://www.latimes.com/local/lanow/la-me-ln-edison-closing-san-onofre-nuclear-plant-20130607,0,7920425.story).

Nuclear plants were supposed to create certainty, reliability, predictability, 24/7 operation. But in the last few years, this has given way to a new reality. Nuclear reactors are 24/7 until they become 0/365 with little or no notice. The above are just four examples. Before the Fukushima disaster, Japan had 54 reactors. Four were irretrievably damaged by the accident. In the 15 months that followed, the other 50 were progressively shut or remained in shut down mode. In the last year, only two have been restarted. It will be a contentious process before any more of them can be restarted. It is possible none will be. Many in Japan assume they won’t be for they are installing solar power at rapid rates – 1.5 gigawatts in the first quarter of 2013 alone – equal to about one-and-a-half reactors in peak power output. About 6 gigawatts would be required to generate an equal amount of electricity to one typical power reactor. Capacity comparable to that will likely be installed in Japan this year.

Finally, Germany prematurely shut eight reactors following Fukushima, consolidating and accelerating the post-Chernobyl process of phasing out nuclear power altogether (the end date is now set for 2022).

But officialdom in the United States still clings to the idea that we need nuclear power. So reliable, so baseload, so twentieth century (oops, wrong century).