The Clean Power Plan is a step in the right direction

With the publication of the final Clean Power Plan, the United States can finally claim some leadership in curbing CO2 emissions at the federal level. The final rule is, on balance, technically, economically and environmentally coherent. The actual goal is short of what it needs to be, but it is better than in the draft plan. And the direction is right, which is the most important thing. Thanks to all of you who worked with us and supported us in the process, especially Scott Denman, Diane Curran, Lisa Heinzerling, Elena Krieger, and my co-author, M.V. Ramana..

We asked for many things in our comments on the draft EPA Clean Power Plan. The EPA agreed not only with the substance, but more important, the reasoning underlying our policy positions in the final Clean Power Plan (CPP) rule.

Most of all we asked for a coherent, technology-neutral rule that would be more protective of climate. Here are some of the big picture items:

  1. Existing nuclear plants and license extensions will not be subsidized by the CPP: We asked that both existing nuclear power plants and existing renewable energy be removed from the calculation of emission targets because they do nothing to reduce CO2 emissions. We asked that they be treated consistently. (Neither have significant onsite emissions of CO2 and both have some offsite lifecycle emissions that are much less than natural gas per unit of generation). Existing generation should not be part of the “Best System of Emission Reduction” (BSER) because we want to reduce CO2 emissions from where they are now (or in 2012, the baseline year). The EPA agreed. Both are gone from the final rule. Further, in its draft rule, the EPA implicitly assumed (in its modelling of the electricity sector) that licenses of existing plants would be extended. The relicensing issue has been removed from the CPP since existing generation is not in the calculation of emission reductions. It is simply the baseline generation, as is clear from page 345 of the final plan (italics added):

    …we believe it is inappropriate to base the BSER on elements that will not reduce CO2 emissions from affected EGUs below current levels. Existing nuclear generation helps make existing CO2 emissions lower than they would otherwise be, but will not further lower CO2 emissions below current levels. Accordingly,…the EPA is not finalizing preservation of generation from existing nuclear capacity as a component of the BSER.

    The same reasoning was applied to license extensions. Only uprates (increases in licensed capacity of existing plants) would be allowed to be counted. This is consistent and technology neutral (in the same way that increasing the capacity of a wind farm would be counted). The rule does not seek to “preserve” existing power plants. Or to shut them down. That will happen on the merits without an EPA hand on the scale in favor of nuclear.

  2. New and under-construction nuclear reactors are not part of the best system of emission reduction; renewable energy is: We pointed out that new nuclear plants are very expensive; even the State of Georgia, whose ratepayers are forced to subsidize two nuclear units through their electricity bills, noted that in its comments. Since the “Best System of Emission Reduction” (BSER) has a cost criterion, new nuclear should be excluded from the BSER. (We also cited other reasons for that.) The EPA excluded new nuclear from BSER but included new renewable energy (p. 345, italics added):

    Investments in new nuclear capacity are very large capital-intensive investments that require substantial lead times. By comparison, investments in new RE generating capacity are individually smaller and require shorter lead times. Also, important recent trends evidenced in RE development, such as rapidly growing investment and rapidly decreasing costs, are not as clearly evidenced in nuclear generation. We view these factors as distinguishing the under-construction nuclear units from RE generating capacity, indicating that the new nuclear capacity is likely of higher cost and therefore less appropriate for inclusion in the BSER.

    This is a critically important statement. We don’t have a shortage of low CO2 sources. We have a shortage of time and money to reduce CO2 emissions. The EPA recognized (very delicately!) that renewable energy is better on both counts. As a result, one or more the four new reactors under construction at Vogtle and Summer can proceed or stop on the financial merits, rather than these units being pushed into existence with the Clean Power Plan playing the role of midwife.

    The EPA also “seeks to drive the widespread development and deployment of wind and solar, as these broad categories of renewable technology are essential to longer term climate strategies” (p. 874). This is an excellent goal. The EPA recognized that costs of solar and wind are declining.

  3. New natural gas plants are not part of the best system of emission reductions: This is perhaps the best and most solid indication that the Obama administration takes long-term reductions seriously. New natural gas combined cycle plants, even though they have lower CO2 emissions per megawatt-hour (using EPA leak rates and global warming potential for methane), will not be part of the BSER even though they meet the cost test and emission rate test. The reason: they will be emitting CO2 for decades (p. 346, italics added):

    However, our determination not to include new construction and operation of new NGCC capacity in the BSER in this final rule rests primarily on the achievable magnitude of emission reductions rather than costs. Unlike emission reductions achieved through the use of any of the building blocks, emission reductions achieved through the use of new NGCC capacity require the construction of additional CO2-emitting generating capacity, a consequence that is inconsistent with the long-term need to continue reducing CO2 emissions beyond the reductions that will be achieved through this rule. New generating assets are planned and built for long lifetimes –- frequently 40 years or more –-that are likely longer than the expected remaining lifetimes of the steam EGUs whose CO2 emissions would initially be displaced be the generation from the new NGCC units. The new capacity is likely to continue to emit CO2 throughout these longer lifetimes….

  4. Increased capacity factor of existing natural gas plants is BSER: The EPA is still allowing increased capacity factor of existing natural gas combined cycle power plants to displace coal. This is the result of its estimate of methane leak rates and global warming potential. So long as new central station natural gas plants are not encouraged, the rate of use of existing plants is a problem that can be sorted out in the coming years. It would have been very difficult to argue only on the grounds of the BSER rules and existing methane leaks estimates that increasing capacity factor of existing natural gas combined cycle units to displace coal is not BSER. The job now is to get the EPA to recognize a wider array of methane leaks rates (that have ample empirical support) and to use both a 20-year and 100-year warming potential screen in the design of its CO2 reduction programs. The recent report from the IPCC uses a global warming potential of 28-34, including feedback effects. It would be entirely appropriate for the EPA to adopt a similar evaluation metric. The 20-year warming potential, which is about three times higher would be even more appropriate given that the climate crisis is developing more rapidly than previously anticipated.
  5. The EPA has incentivized early investment in low-income efficiency programs (p. 864 onward): This is a very important feature of the CPP. States that want to make very sure that low-income households are not adversely impacted by the rule will take advantage of the additional emission reduction credits the EPA is offering for early action. This also promises to provide other benefits such as reduction of the cost of energy assistance programs and lower adverse health impacts due to inability to pay for health care or medicines.
  6. The cap-and-trade provision is OK in the electricity context, though with reservations: Carbon permits from new generation can be traded. For instance, existing nuclear plants cannot generate tradeable CO2 credits (unless they are from a licensed uprate). I am not a fan of expansive cap-and-trade but the EPA formulation in the CPP makes sense to me. It is the same as if emission limits were set for a group of states or at the grid level, such as the PJM grid in the mid-Atlantic region but extending inland to Ohio and beyond, or the MISO grid in the upper Midwest. The EPA seeks not to impose a model of reductions; only to get to a certain level of reductions. In the cap-and-trade system permitted by the EPA, the CO2 reduction could happen in one state or in another, but it will have to happen. One of my reservations is that the EPA also allows the trading of energy efficiency credits across state lines. It is difficult enough to account for program-induced efficiency improvements within a state and distinguish them from say, the effects of federal appliance standards. Bundling these efficiency gains into tradeable credits is not a good idea. Another issue is that the method of calculating the reduction in emission rate is not the best as applied to efficiency. We had asked for a more global and comprehensive approach to CO2 accounting, but did not succeed on this point.
  7. Conclusion – The CPP is a real tour de force; it gives me hope. Of course, there is much work to do now that the final CPP has been published (besides making it stick). We need to advocate for states to mandate GHG reduction targets of 40 to 50 percent by 2030 from all sources; we need to accelerate electrification of transportation and restructuring of the grid….But the CPP is a great springboard from which to make these leaps.

Fukushima reflections on the second anniversary of the accident

Statement of Arjun Makhijani for the March 2013 conference commemorating the Fukushima accident
To be read by Helen Caldicott

I appreciate that my friend, Helen Caldicott, one of the two people who inspired my book Carbon-Free and Nuclear-Free (the other was S. David Freeman) has agreed to read a brief statement from me on this second anniversary of the Fukushima disaster. I wanted to share two of the new things I have learned as I have followed the consequences of Fukushima unfold.

First, the Japanese government proposed to allow doses as high as 2 rem (20 millisieverts) per year to school children, claiming that the risk was low or at least tolerable. An exposure at this level over five years – 10 rem in all — to a girl, starting at age five, would create a cancer incidence risk of about 3 percent, using the [age- and gender-specific] risk estimates in the National Academies BEIR VII report.

Now imagine that you are a parent in Japan trying to decide whether to send your daughter to such a school. Roughly thirty of every hundred girls would eventually develop cancer at some point in their lives; just one of those would be attributable to Fukushima school exposure, according to the risk numbers. But no one would know if their daughter’s cancer was attributable to the exposure at school and neither would the Japanese government’s radiation bureaucrats. Why is it difficult to understand that while the risk attributable to school contamination would be one in thirty, the proportion of parents stricken with guilt and doubt would be closer to one in three? Would you ever forgive yourself if you made the decision to send your daughter to that school? Or your son, though the risk attributable to Fukushima exposure would be less than that experienced by girls?

Indeed, due to the long latency period of most cancers, you would be fearful even if no cancer had as yet appeared. The Pentagon understood this when a Joint Chiefs of Staff Task Force evaluated the extensive contamination produced by the July 1946 underwater nuclear bomb test (Test Baker) at Bikini for its usefulness in war. Here is a quote from their 1947 report:

“Of the survivors in the contaminated areas , some would be doomed by radiation sickness in hours some in days, some in years. But, these areas, irregular in size and shape, as wind and topography might form them, would have no visible boundaries. No survivor could be certain he was not among the doomed, and so added to every terror of the moment, thousands would be stricken with a fear of death and the uncertainty of the time of its arrival.”

Compare this for yourself with the aftermath of Fukushima and the plight of the parents.

Second, nuclear power’s conceit was that nuclear power is 24/7 electricity supply. Since Fukushima, over sixty of the world’s light water power reactors have been prematurely shut for a variety of reasons, though just four reactors were stricken by the accident: 52 in Japan, eight in Germany, several in the U.S. Even if some are eventually restarted, nuclear power has shown a unique ability to go from 24/7 power supply to 0/365 essentially overnight for long periods– hardly a convincing claim of reliability.

We can do better than making plutonium just to boil water or polluting the Earth with fossil fuel use. When I finished Carbon-Free Nuclear-Free in 2007, I estimated it would take about forty years to get to an affordable, fully renewable energy system in the United States. Today, I think in can be done in twenty-five to thirty years. Are we up to the challenge? Finally, I truly regret I cannot be there to publicly thank and honor my friend Helen for inspiring Carbon-Free, Nuclear-Free, which you can download free from ieer.org, also thanks to her. I wish you a very productive conference.

(Also see IEER’s publication Plutonium: Deadly Gold of the Nuclear Age, June 1992.)

The German Energy Transition

The Heinrich Böll Foundation has created a new site to inform the public about its historic energy transition or “energiewende”: http://www.EnergyTransition.de The aim is the reduce greenhouse gas emissions by 80 percent by 2050. A renewable electricity sector is a principal part of this goal. Germany already produces 26% of its electricity and is set to exceed the target of 40% by 2020. As evidence for severe climate disruption mounts, the German energiewende provides some hope. This kind of transformation was a gleam in my eye when I finished Carbon-Free and Nuclear Free in 2007. It was my hope for the United States. I still hope that action by states, corporations, individuals, and even the federal government (though CO2 rules, efficiency standards, etc.) will get us to a fully renewable energy sector by 2050 in the United States and worldwide.

— Arjun

Bad News on Climate; Good News on Energy

My February 26, 2008 op ed in the Dallas Morning News seems to have excited a great deal of interest, including on this blog. I really enjoyed my speaking tour of Texas, including being on the Dallas PBS TV program named Think, talking about Carbon-Free and Nuclear Free. See the video here.

(Dr. Egghead’s philosophical disclosure: Descartes could have done better than “€œI think therefore I am.” I prefer what the French do rather than what their philosophers say: “€œI eat therefore I am” and also “€œI am therefore I eat.”)

Watch the video anyway. You’€™ll like it. Krys Boyd was a really knowledgeable and gracious host at KERA TV. If you love my mellifluous voice on that, see clips from one of my Dallas area speeches, courtesy of the Dallas Peace Center.

There is bad news on climate and good news on energy.

One of the indicators of a warming Earth is the extent of summer Arctic Ice melting. Last summer’€™s melting was not only the worst since measurements began, but the rate of change increased drastically. Here is a chart showing model projections (the red and the dashed lines) and actual satellite measurements (heavy black line)

Great Arctic Ice Melt of 2007

Chart of IPCC's modelling predictions to the end of the century versus actual satellite measurements.

Chart is courtesy of Dr. A. Sorteberg, Bjerknes Centre for Climate Research, University of Bergen, Norway.

The previous worst case estimate for complete summer melting was about 2070. Now it may be less than a decade. We cannot afford to wait for time to tell us whether this worst case will come about. We must act. Two climate scientists, H. Damon Matthews of Concordia University and Ken Caldiera of the Carnegie Institution of Washington, recently published an article in Geophysical Research Letters, analyzing the long-term requirements for protecting climate and concluded as follows:

“We have shown here that stable global temperatures within the next several centuries can be achieved if CO2 emissions are reduced to nearly zero. This means that avoiding future human-induced climate warming may require policies that seek not only to decrease CO2 emissions, but to eliminate them entirely.” [emphasis and color added]Source: H. Damon Matthews and Ken Caldeira, Stabilizing climate requires near-zero emissions, GEOPHYSICAL RESEARCH LETTERS, VOL. 35, XXXX, 2008. (prepublication)

See a New Scientist article about this paper

There is good news to offset the bad news: My book Carbon-Free and Nuclear-Free shows that we do no€™t have to go to the poor house to eliminate carbon dioxide emissions from fossil fuels. We can have a flourishing economy and protect climate. Wind energy in good areas is already cheaper than nuclear or competitive with it. The country needs sensible rules for investment in transmission lines to create more of a boom in wind. It’€™s already happening in Texas, which has such rules; some oilmen like T. Boone Pickens see wind farms as the future of energy. See the New York Times article.

In the United States, the area of parking lots and commercial building rooftops is large enough to supply much or most of its electricity requirements. And Nanosolar, located in Silicon Valley, is all set to make solar panels on a large-scale for less than a dollar watt (plus installation). That means solar electricity is likely to make nuclear energy economically obsolete by the time the first proposed new nuclear plants come on line (if all goes according to the nuclear industry’€™s plans), making for another generation of economic lemons, for which ratepayers and taxpayers will pay a heavy price. Why go there?

New Zealand has announced a goal of zero CO2 emissions without nuclear power by mid-century. Why not the United States? Declaring that to be a goal and enacting the tough policies that will be needed could work wonders for restoring the positive image that most of the world’€™s people once had about the United States, which has fallen into sad disrepute abroad in recent times.

S. David Freeman, former Chairman of the TVA, noted in his Foreword to my book, that it will take “determination and guts …[to] achieve a renewable energy economy.” That means your involvement. Take the message of Carbon-Free and Nuclear-Free to the candidates of all parties, independent of those whom you personally support; ask them if they are familiar with Carbon-Free and Nuclear-Free, which shows we can live well without fossil fuels or nuclear power.

You can do more. Link to this blog; comment on it; make it the go-to place for energy commentary, discussion, and Q&A about the energy problems of our time. Read my book. Download it free. Discuss it in your book club.

Posts to come: On China and India; on efficiency; on the coming generation of passenger vehicles.

–Arjun

Carbon-Free and Nuclear-Free is getting an enthusiastic response, but several new nuclear facilities are planned


I have been going around the country speaking about my new book, Carbon-Free and Nuclear-Free: A Roadmap for U.S. Energy Policy. (Download it free)

Nothing I have done in 37 years of work on energy, environment, and nuclear weapons and power issues has caught on like this.

As evidence of serious and rapid climate change mounts and a price on carbon emissions looks more and more certain, companies’ coal-fired power plants are hard to justify and harder to finance. So the nuclear industry wants to ride into town as the savior. Having failed to deliver electricity “too cheap to meter” (promised in the 1950s by the Chairman of the Atomic Energy Commission, Lewis Strauss), it now wants massive new government subsidies in the form of loan guarantees.

But it is a false choice. Those who oppose nuclear power as the “solution” to the global climate crisis are right: a combination of efficiency, renewable energy, combined heat and power, and emerging technologies such as plug-in hybrid cars can allow us to phase out all fossil fuels and nuclear power in 30 to 50 years.

Eight new nuclear reactors are being proposed in Texas alone. The two near Amarillo, in the panhandle, will consume 60 million gallons of water every day—more than what the entire city uses. The company proposing the plant has said there is a lake there in an unidentified location that will supply the water. In Idaho, the CEO of Alternate Energy Holdings, which wants to build a power plant there, implies that nuclear power will cost only 1 to 2 cents per kilowatt-hour, because capital cost is borne by the investors, as if Wall Street were a kind of charity for electricity consumers. Far from it. Wall Street got burned by nuclear power in the 1980s; it is leery of financing them. That’s why the nuclear industry has the largest hat in hand in Washington, D.C. asking for handouts such as license application subsidies and 100 percent loan guarantees.

But at least some investors are catching on. Mid-American Energy, owned by Warren Buffet’s Berkshire Hathaway, announced last month (January 2008) that it was abandoning plans to build a nuclear power plant in Idaho because it could not provide economical power to its customers. Austin Energy, the city-owned utility in the capital of Texas, has recommended that the City vote not to buy a share of the two proposed reactors near Bay City Texas. The investment would, at this time, be “unwise” and imprudent” said the utility, because of insufficient time to examine the paperwork and the risk of cost overruns and delays.

Here is a link to a summary of my book (Note: 2.5 MB pdf)

and to an op ed I recently wrote for the Deseret News (Salt Lake City)

I invite you to comment on the analysis in my book, on what you are doing in your neighborhood, city, county, or state regarding energy and climate and to link to my blog.

–Arjun

PO Box 5324 · Takoma Park, Maryland, 20913 USA · Tel. 1-301-509-6843 · E-mail: